

バイポーラ・アナログ集積回路 Bipolar Analog Integrated Circuit

μPC458,4741

クワッド低ノイズ演算増幅回路

 μ PC458, 4741は、位相補正内蔵形演算増幅器を 4 回路集積したもので、汎用の741タイプより高速、広帯域化されておりますので、アクティブ・フィルタ、パルス・アンプなどのAC増幅に最適です。

使用セット、動作周囲温度に応じて通信工業用の μ PC458と一般用の μ PC4741があります。

また、特殊対応品として、DC項目選別品を用意しています。

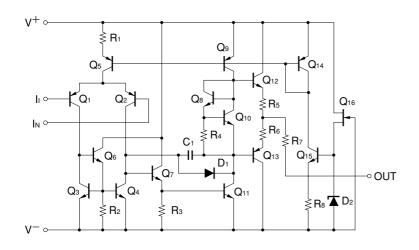
なお、シリーズ品として、同等特性でデュアル・タイプの μ PC258, 4558もあります。

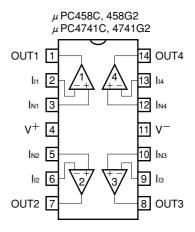
特 徴

○スルーレート
1.6 V/ µs (TYP.)
○ゼロクロス周波数
③ 5 MHz (TYP.)
③ 7 MHz (TYP.)
③ 1 MHz (TYP.)
③ 1 MHz (TYP.)
※ 1 MV (TYP.)
※ 1 MV (TYP.)
※ 1 MV (TYP.)
※ 1 MA (TYP.)

- ○位相補正回路を内蔵しています。
- ○出力短絡保護回路を内蔵しています。
- ○標準のクワッド・オペアンプの端子接続(ピン・コンパチブル)です。

★ オーダ情報


オーダ名称	選別内容	パッケージ
μ PC458C	一般品	14ピン・プラスチックDIP(7.62 mm(300))
μ PC458C (5)	DC項目選別品	"
μPC458G2	一般品	14ピン・プラスチックSOP(5.72 mm(225))
μ PC458G2 (5)	DC項目選別品	"
μPC4741C	一般品	14ピン・プラスチックDIP(7.62 mm(300))
μPC4741C (5)	DC項目選別品	"
μPC4741G2	一般品	14ピン・プラスチックSOP(5.72 mm(225))
μPC4741G2 (5)	DC項目選別品	"


本資料の内容は、予告なく変更することがありますので、最新のものであることをご確認の上ご使用ください。

等価回路(1/4回路)

端子接続図(Top View)

絶対最大定格(TA = 25 ℃)

項目	略号	μPC458C	μPC458G2	μPC4741C	μPC4741G2	単 位	
		μ PC458C (5)	μPC458G2(5)	μ PC4741C (5)	μPC4741G2(5)		
電源電圧 ^{注1}	V+-V-		-0.3~+40			V	
差動入力電圧	VID		±30				
入力電圧 ^{注 2}	Vı		V ⁻ -0.3~V ⁺ +0.3				
出力印加電圧 ^{注 3}	Vo		V0.3~V++0.3				
全損失	Рт	570 ^{注 4}	550 ^{注 5}	570 ^{注 4}	550 ^{注 5}	mW	
出力短絡時間 ^{注 6}			無限大				
動作周囲温度	Та	-40~+85 -20~+80				$^{\circ}$	
保存温度	T _{stg}	−55~+125				$^{\circ}$	

- 注1. 電源の逆接続は破壊の可能性がありますのでご注意ください。
 - 2. 特性劣化や破壊がなく、入力端子に印加可能な入力電圧範囲です。 電源ON/OFF時などの過渡状態も含めて定格を越えないようにご注意ください。 なお、オペアンプとして正常動作する入力電圧は、電気的特性の同相入力電圧範囲内です。
 - 3. 特性劣化や破壊がなく、出力端子に外部から印加可能な電圧範囲です。 電源ON/OFF時などの過渡状態も含めて定格を越えないようにご注意ください。 なお、オペアンプとして得られる出力電圧は、電気的特性の最大出力電圧の範囲内です。
 - **4.** TA≦+50 ℃での値です。TA>50 ℃では-7.6 mW/℃でディレーティングしてください。
 - **5.** TA≦+25 ℃での値です。TA>25 ℃では-5.5 mW/℃でディレーティングしてください。
 - 6. 全損失および注4, 5のディレーティング以下でご使用ください。

推奨動作条件

項目	略号	MIN.	TYP.	MAX.	単 位
電源電圧	V [±]	±4		±16	V

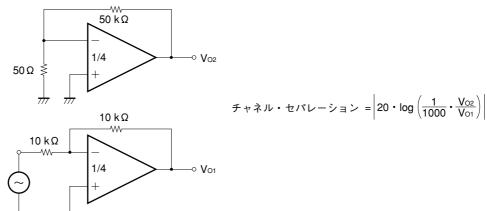
 μ PC458C, 458G2, 4741C, 4741G2

電気的特性(T_A = 25 ℃, V[±] = ±15 V)

	項目	略号	条件	MIN.	TYP.	MAX.	単 位
	入力オフセット電圧	Vio	Rs≦100 Ω		±1.0	±5.0	mV
	入力オフセット電流	lio			±30	±50	nA
	入力バイアス電流	IB ^{注7}			70	300	nA
	大振幅電圧利得	Av	$RL \ge 2 k\Omega$, $Vo = \pm 10 V$	25000	50000		
*	消費電力	Pd	lo= 0 A		150	210	mW
	同相信号除去比	CMR		80	90		dB
	電源変動除去比	SVR			50	100	μ V/V
	最大出力電圧	Vom	R∟≧10 kΩ	±12	±13.7		V
	最大出力電圧	Vom	R∟≧2 kΩ	±10	±12.5		V
	同相入力電圧範囲	VICM		±12	±14		V
	スルーレート	SR	$A_v = 1$		1.6		V/ μs
	入力換算電圧性ノイズ	e n	f = 1 kHz		9		nV/ √Hz
	チャネル・セパレーション		f = 10 kHz		108		dB

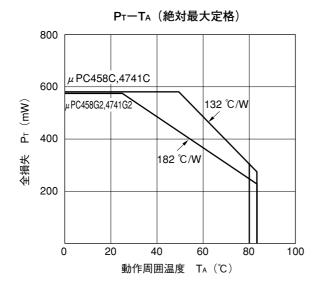
 $\mu \, \text{PC458C}$ (5) , 458G2 (5) , 4741C (5) , 4741G2 (5)

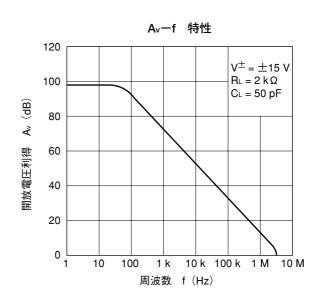
電気的特性(TA = 25 ℃, V[±] = ±15 V)

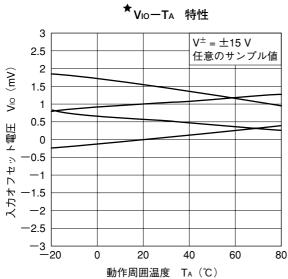

	項目	略号	条件	MIN.	TYP.	MAX.	単 位
	入力オフセット電圧	Vio	Rs≦100 Ω		±1.0	±2.0	mV
	入力オフセット電流	lio			±30	±50	nA
	入力バイアス電流	IB ^{注7}				100	nA
	大振幅電圧利得	Av	$R_L \ge 2 k\Omega$, $V_0 = \pm 10 V$	28000	50000		
*	消費電力	Pd	lo= 0 A		150	210	mW
	同相信号除去比	CMR		85	90		dB
	電源変動除去比	SVR				50	μV/V
	最大出力電圧	Vom	R∟≧10 kΩ	±12.5	±13.7		V
	最大出力電圧	Vom	R∟≧2 kΩ	±11	±12.5		V
	同相入力電圧範囲	VICM		±13	±14		V
	スルーレート	SR	$A_v = 1$		1.6		V/ μs
	入力換算電圧性ノイズ	e n	f = 1 kHz		9		nV/√Hz
	チャネル・セパレーション		f = 10 kHz		108		dB

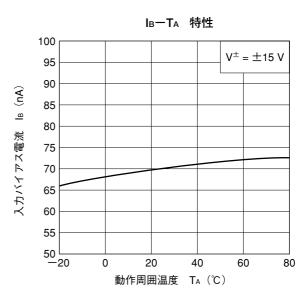
注7. 入力バイアス電流の方向は、初段がPNPトランジスタで構成されていますので、ICから流れ出す方向です。

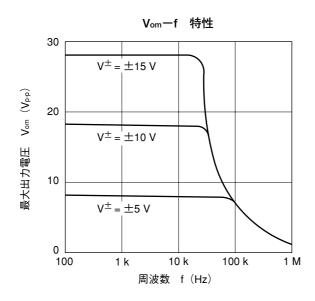
ご使用に際して下記のことがらに十分ご注意ください。

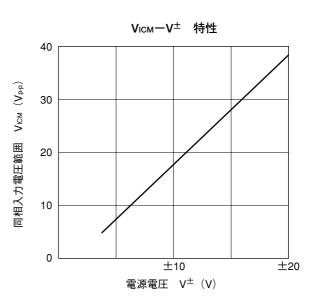

低レベル入力を扱う回路において、各チャネルの内部消費電力が極端に異なる場合にはICチップの温度勾配によ って相互干渉が起きることがあります。

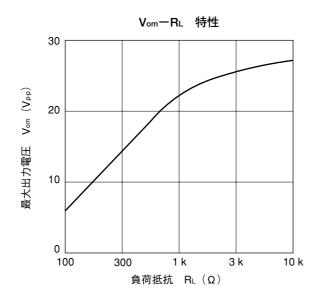

チャネル・セパレーション測定回路

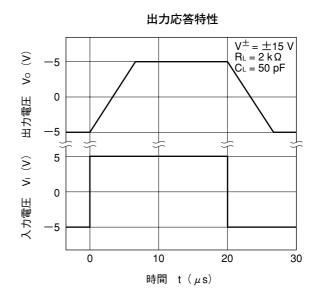


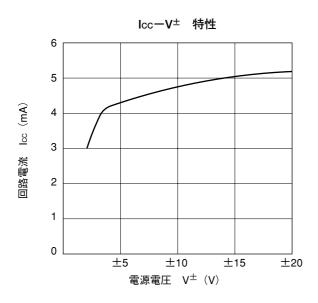

特性曲線(T_A = 25 ℃, TYP.)(参考值)

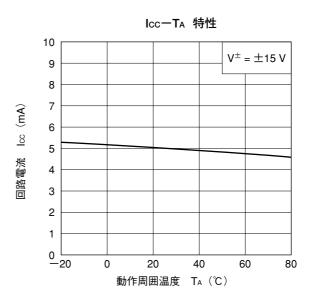

NEC

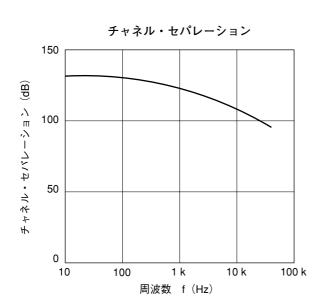


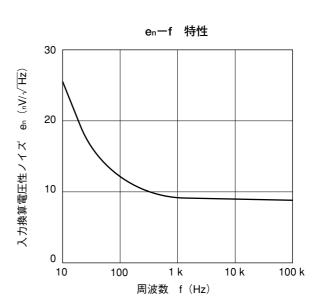












使用上の注意事項

○未使用回路の処理

使用しない回路がある場合は次のように接続することをお勧めします。

未使用回路処理例

備考 この例では、 V^+ と V^- の中間電位を印加しています。

○使用電源(両電源/単電源)について

オペアンプは V^+-V^- 間に所定の電圧が印加されていれば動作します。したがって単電源(V^- = GND)でも動作しますがGND近辺の入力、出力の動作ができませんので、同相入力電圧範囲、最大出力電圧に注意してご使用ください。

○入力端子電圧, 出力端子電圧の定格について

入力端子、出力端子の電圧が絶対最大定格を越えた場合には、IC内部の寄生ダイオードが導通し、特性劣化や破壊にいたる場合があります。なお、入力端子が V^- より低くなる、もしくは出力端子が電源電圧を越える可能性がある場合には、順方向電圧の小さいダイオード(ショットキィ・ダイオードなど)でクランプ回路を設け保護することを推奨いたします。

○同相入力電圧範囲について

電源電圧が電気的特性の条件と異なる場合の同相入力電圧範囲のTYP.値は次の範囲となります。

 V_{ICM} (TYP.) : $V^-+1 \sim V^+-1$ (V) (TA = 25 °C)

なお、設計にあたっては特性バラツキ、温度特性などを考慮し余裕をもってご使用ください。

○最大出力電圧について

電源電圧が電気的特性の条件と異なる場合の最大出力電圧のTYP.値は次の範囲となります。

 V_{om}^+ (TYP.) : V^+ - 1.3 (V) (T_A = 25 °C), V_{om}^- (TYP.) : V^- + 1.3 (V) (T_A = 25 °C)

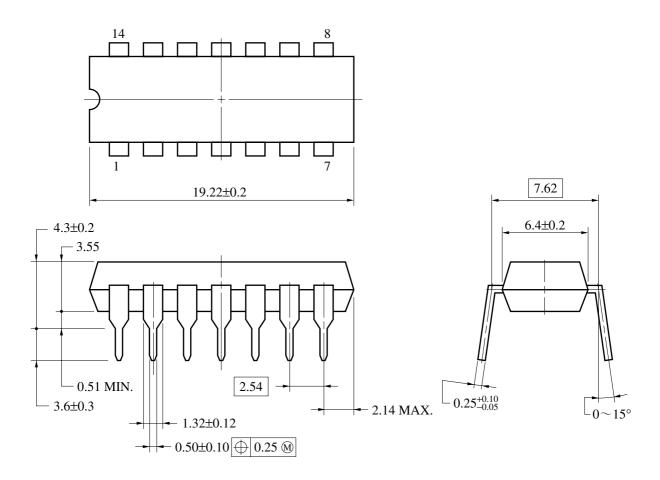
なお、設計にあたっては特性バラツキ、温度特性などを考慮し余裕をもってご使用ください。

また,出力電流が大きくなると,出力電圧範囲(Vom+-Vom-)は狭くなりますので,あわせてご注意ください。

○ICの取り扱いについて

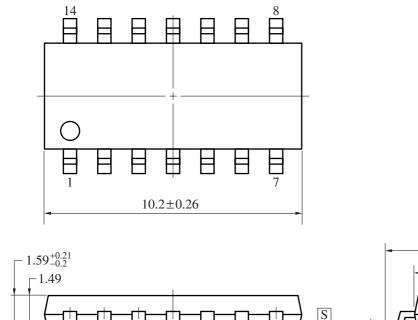
基板のソリや曲がりなどによりICに応力が加わると、圧電(ピエゾ)効果により特性が変動します。基板のソリや曲がりにご注意ください。

代表的オペアンプの主特性一覧表


分類	品	名	電源電圧	回路電流	標準スルーレート	入力オフセット電圧
	通工用	一般用	(推奨値)	Icc (mA)	SR (V/µs)	V _{IO} (mV)
				MAX.	TYP.	MAX.
低ノイズ	μPC258	μPC4558	±4~±16	5.6	1	±6
	μPC458	μPC4741	±4~±16	7	1	±5
	μPC259	μPC4560	±4~±16	5.6	2.8	±6
		μPC4570	±4~±16	8	7	±5
		μPC4572	±2~±7	7	7	±5
		μPC4574	±4~±16	12	6	±5
単電源	μPC1251	μPC358	+3~+30	1.2	0.3	±7
	μPC451	μPC324	+3~+30	2	0.3	±7
	μPC452	μPC3403	+3~+32	7	0.8	±7
	μPC842	μPC4742	+3~+32	5.5	7	±5
	μPC844	μPC4744	+3~+32	11	7	±6
J-FET	μPC801	μ PC4081	±5~±16	2.8	13	±15
入力	μPC803	μPC4082	±5~±16	5.6	13	±15
	μPC804	μ PC4084	±5~±16	11.2	13	±15
	μPC821	μPC4071	±5~±16	2.7	13	±10
	μPC822	μPC4072	±5~±16	5	13	±10
	μPC824	μPC4074	±5~±16	10	13	±10
	μPC831	μ PC4061	±2~±16	0.25	3	±10
	μPC832	μPC4062	±2~±16	0.5	3	±10
	μPC834	μPC4064	±2~±16	1	3	±10
	μPC811	μPC4091	±5~±16	3.4	15	±2.5
	μPC812	μPC4092	±5~±16	6.8	15	±3
	μPC813	μPC4093	±5~±16	3.4	25	±2.5
	μPC814	μPC4094	±5~±16	6.8	25	±3
高精度	μPC815		±3~±20	4.6	1.6	±0.06
	μPC816		±3~±20	4.6	7.6	±0.06
マイクロパワー	μPC802	μPC4250	±1~±16	0.1(可変)	~1	±6

注意 1. 表中の値は比較する際の参考データとしてお考えください。なお、品種ごとの詳細な特性については個別の データ・シートをご参照くださいますようお願いいたします。

2. オペアンプの選定法の詳細はインフォメーション資料「オペアンプ, コンパレータの選択法」(G10617J)をご参照ください。

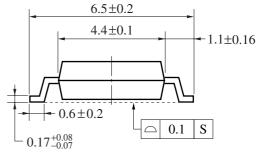

外形図

★ 14ピン・プラスチック DIP(7.62 mm(300))外形図(単位:mm)

P14C-100-300B1-3

14ピン・プラスチック SOP(5.72 mm(225))外形図(単位: mm)

1.42 MAX.→


1.27

- 0.42 $^{+0.08}_{-0.07}$ \bigcirc 0.1 \bigcirc

 -0.1 ± 0.1

端子先端形状詳細図

S14GM-50-225B, C-6

★ 半田付け推奨条件

この製品の半田付け実装は、次の推奨条件で実施してください。

なお、推奨条件以外の半田付け方式および半田付け条件については、当社販売員にご相談ください。 半田付け推奨条件の技術的内容については下記を参照してください。

「半導体デバイス実装マニュアル」(http://www.necel.com/pkg/ja/jissou/index.html)

表面実装タイプの半田付け推奨条件

μ PC458G2, 458G2(5), 4741G2, 4741G2(5):14ピン・プラスチックSOP(5.72 mm(225))

半田付け方式	半田付け条件	推奨条件記号
赤外線リフロ	パッケージ・ピーク温度:235℃,時間:30秒以内(210℃以上),回数:3回	IR35-00-3
VPS	パッケージ・ピーク温度:215℃,時間:40秒以内(200℃以上),回数:3回	VP15-00-3
ウエーブ・ソルダリング	半田槽温度:260℃以下,時間:10秒以内,回数:1回,	WS60-00-1
	予備加熱温度:120℃ MAX.(パッケージ表面温度)	
端子部分加熱	端子温度:300℃以下,時間:3秒以内(デバイスの一辺当たり)	_

注意 半田付け方式の併用はお避けください(ただし,端子部分加熱方式は除く)。

挿入タイプの半田付け推奨条件

 μ PC458C, 458C(5), 4741C, 4741C(5):14ピン・プラスチックDIP(7.62 mm(300))

半田付け方式	半田付け条件
ウエーブ・ソルダリング	半田槽温度:260 ℃以下,時間:10秒以内
(端子のみ)	
端子部分加熱	端子温度:300 ℃以下,時間:3 秒以内(1 端子当たり)

注意 ウエーブ・ソルダリングは端子のみとし、噴流半田が直接本体に接触しないようにご注意ください。

参考資料

オペアンプの用語と特性	G10147J
オペアンプ,コンパレータの選択法	G10617J
+5 V動作オペアンプの使い方	G13689J
J-FET入力オペアンプの使い方	G13257J
高精度オペアンプの使い方	G13412J

11

- ◆本資料に記載されている内容は2004年3月現在のもので、今後、予告なく変更することがあります。量産設計の際には最新の個別データ・シート等をご参照ください。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。当社は、本資料の誤りに関し、一切 その責を負いません。
- 当社は、本資料に記載された当社製品の使用に関連し発生した第三者の特許権、著作権その他の知的財産権の侵害等に関し、一切その責を負いません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- ◆本資料に記載された回路、ソフトウェアおよびこれらに関する情報は、半導体製品の動作例、応用例を 説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関する情報を使 用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に 生じた損害に関し、当社は、一切その責を負いません。
- 当社は、当社製品の品質、信頼性の向上に努めておりますが、当社製品の不具合が完全に発生しないことを保証するものではありません。当社製品の不具合により生じた生命、身体および財産に対する損害の危険を最小限度にするために、冗長設計、延焼対策設計、誤動作防止設計等安全設計を行ってください。
- 当社は、当社製品の品質水準を「標準水準」、「特別水準」およびお客様に品質保証プログラムを指定 していただく「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われ ることを意図しておりますので、当社製品の品質水準をご確認ください。

標準水準:コンピュータ,OA機器,通信機器,計測機器,AV機器,家電,工作機械,パーソナル機器,産業用ロボット

特別水準:輸送機器(自動車,電車,船舶等),交通用信号機器,防災・防犯装置,各種安全装置, 生命維持を目的として設計されていない医療機器

特定水準: 航空機器, 航空宇宙機器, 海底中継機器, 原子力制御システム, 生命維持のための医療機器, 生命維持のための装置またはシステム等

当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。意図されていない用途で当社製品の使用をお客様が希望する場合には、事前に当社販売窓口までお問い合わせください。

(注)

- (1) 本事項において使用されている「当社」とは、NECエレクトロニクス株式会社およびNECエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいう。
- (2) 本事項において使用されている「当社製品」とは、(1) において定義された当社の開発、製造製品をいう。

M8E 02.11

【発 行】

NECエレクトロニクス株式会社

〒211-8668 神奈川県川崎市中原区下沼部1753

電話(代表): 044(435)5111

ー お問い合わせ先-

【ホームページ】

NECエレクトロニクスの情報がインターネットでご覧になれます。

URL(アドレス) http://www.necel.co.jp/

【営業関係,技術関係お問い合わせ先】

半導体ホットライン 電 話 : 044-435-9494 (電話:午前 9:00~12:00,午後 1:00~5:00) **E-mail**:info@necel.com

【資料請求先】

NECエレクトロニクスのホームページよりダウンロードいただくか、NECエレクトロニクスの販売特約店へお申し付けください。