

1回路入り汎用オペアンプ

概要

NJM741 は内部位相補償型、高性能演算増幅器です。ボルテージフォロワ積分器、加算器、一般負帰還増幅器等の応用によって、計測制御用等の分野に広範囲な応用が可能です。

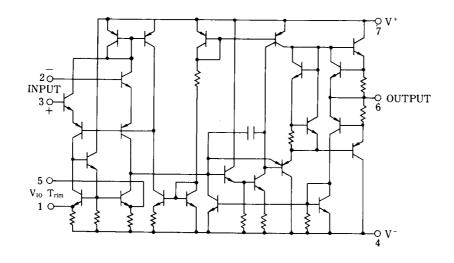
外形

NJM741D

NJM741M

特徴

動作電源電圧 (±3~±18V) 1 回路入り オフセット調整端子付 バイポーラ構造 外形 DIP8,DMP8

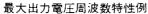

端子配列

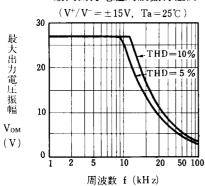
D,M タイプ

ピン配置 1. V₁₀ T_{rim} 2. — INPUT 3. + INPUT 4. V⁻ 5. V₁₀ T_{rim} 6. OUTPUT 7. V⁺ 8. NC

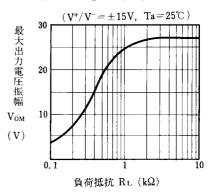
等価回路図

絶対最大定格 (Ta=25°C)

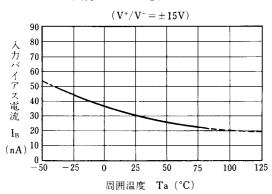

項目				記号	定格	単 位
電	源	電	圧	V+/V-	± 18	V
同	相入	力	電圧	V _{IC}	±15 (注)	V
差	動入	力	電圧	V_{ID}	± 30	V
消	費	電	力	P _D	(D タイプ) 500 (M タイプ) 300	mW
動	作	温	度	T _{opr}	-40 ~ +85	°C
保	保 存 温 度		T _{stg}	-40 ~ + 125	°C	

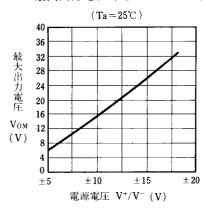

⁽注)電源電圧が±151以下の場合は、電源電圧と等しくなります。

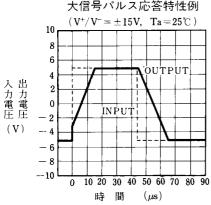
電気的特性 (Ta=25°C,V+/V-=± 15V)

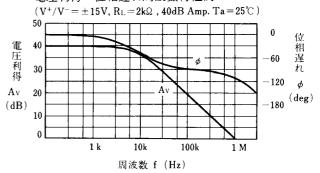

項 目	記号	条件	最 小	標準	最 大	単位
入力オフセット電圧	V _{IO}	R_{S} 10k Ω	-	2.0	6.0	mV
入力オフセット電流	I ₁₀		-	5	200	nA
入力バイアス電流	I _B		-	30	500	nA
入 力 抵 抗	R_{IN}		0.3	2.0	-	ΜΩ
電 圧 利 得	A_{V}	R_L 2k Ω , V_0 =±10V	86	110	-	dB
最大出力電圧1	V _{OM1}	R_L 10k Ω	± 12	± 14	-	V
最大出力電圧2	V_{OM2}	R_L $2k\Omega$	± 10	± 13	-	V
同相入力電圧範囲	V_{ICM}		± 12	± 13	-	V
同相信号除去比	CMR	$R_{\rm S}$ 10k Ω	70	100	-	dB
電源電圧除去比	SVR	$R_{\rm S}$ 10k Ω	76.5	100	-	dB
消 費 電 流	Ιœ		-	1.7	2.8	mA
ス ル ー レ ー ト	SR	R_L $2k\Omega$	-	0.5	-	V/µs
過渡応答特性	t_{R}	$V_{IN}=20$ m $V, R_L=2$ k $\Omega, C_L=100$ pF	-	0.3	-	μs
(上 昇 時 間)過 渡 応 答 特 性(オーバー・シュート)	to	V_{IN} =20mV, R_L =2k Ω , C_L =100pF	-	5.0	-	%

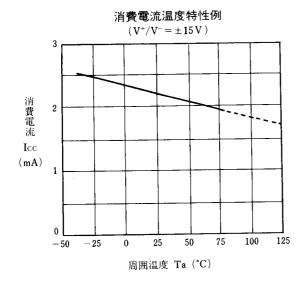
特性例

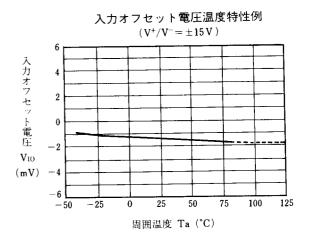


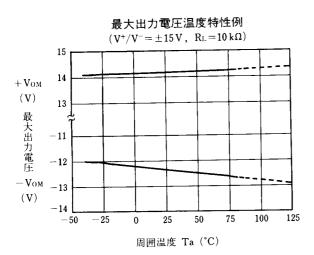

最大出力電圧振幅対負荷特性例

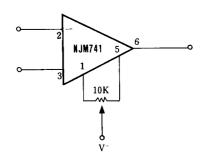

入力バイアス電流温度特性例


最大出力電圧対電源電圧特性例


ボルテージフォロワ 大信号パルス応答特性例




電圧利得・位相遅れ周波数特性例


特性例

オフセット調整方法

注音車頂>

このデータブックの掲載が容の正確さには 万全を期しておりますが、掲載が容について 何らかか活めな保証を行うものではありませ ん。とくに応用回路については、製品の代表 的な応用例を説明するためのものです。また、 工業所有権その他の権利の実施権の許諾を伴 うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。