
MULTILAYER CERAMIC CAPACITORS

WAVE

REFLOW

■PARTS NUMBER

△=Blank space

End termination

Plated

Cu Internal Electrodes

①Rated voltage

Code	Rated voltage[VDC]
Р	2.5
Α	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

_	

3End termination

K

①Dimension (L × W)				
Туре	Dimensions (L×W)[mm]	EIA (inch)		
021	0.25 × 0.125	008004		
042	0.4 × 0.2	01005		
063	0.6 × 0.3	0201		
105	1.0 × 0.5	0402		
	0.52 × 1.0 💥	0204		
107	1.6 × 0.8	0603		
	0.8 × 1.6 ※	0306		
212	2.0 × 1.25	0805		
	1.25× 2.0 ※	0508		
316	3.2 × 1.6	1206		

3.2 × 2.5

4.5 × 3.2

325 432

②Series name

Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor

Note: ※LW reverse type(□WK) only

⑤Dimension tolerance

Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
				0.45±0.05
Α	212	2.0 + 0.15 / -0.05	1.25+0.15/-0.05	0.85±0.10
				1.25+0.15/-0.05
	216	2 2 + 0 20	1.6±0.20	0.85±0.10
	316	3.2 ± 0.20		1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
	063	0.6±0.09	0.3±0.09	0.3±0.09
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	16 0.00 / 0	0.8+0.20/-0	0.45±0.05
В	107	1.6+0.20/-0		0.8+0.20/-0
В				0.45±0.05
	212	2.0+0.20/-0	1.25+0.20/-0	0.85±0.10
				1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
С	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0

Note: P.6 Standard external dimensions

Δ= Blank space

1210

1812

⑥Temperature characteristics code

■ High dielectric type (Excluding Super low distortion multilayer ceramic capacitor)

Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
	JIS	В	-25 ~ + 85	20	±10%	±10%	K
BJ	JIS	Ь	-25° + 65	20	±10%	±20%	М
ы	EIA	X5R	-55 ~ + 85	25	±15%	±10%	K
	EIA	YOK	-55 + 65	25	±13%	±20%	М
В7	EIA	X7R	-55 ~ +125	25	±15%	±10%	K
Б/	EIA	X/R	-55~+125	25	±15%	±20%	М
C6	EIA	X6S	-55 ~ +105	25	±22%	±10%	K
Co	EIA	702	-55~+105	25	±22%	±20%	М
C7	EIA	X7S	-55 ~ +125	25	±22%	±10%	K
67	EIA	A/3	-55/-0 + 125	25	1 22 70	±20%	М
1.0()*()	(W) 514 VED 55 4 05 05	1.450/	±10%	K			
LD(※)	EIA	X5R	−55~+ 85	25	±15%	±20%	М

Note: X.LD Low distortion high value multilayer ceramic capacitor

Δ= Blank space

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

■Temperature compensating type

- remperature compensating type							
Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
						±0.05pF	Α
						±0.1pF	В
CG	EIA	C0G	-55 ~ +125	25	0 ± 30 ppm/°C	±0.25pF	С
						±0.5pF	D
						±5%	J
	JIS	UJ		20		±0.25pF	С
UJ	018	00	-55 ~ +125	20	-750 ± 120 ppm/°C	±0.5pF	D
	EIA	U2J		25		±5%	J
LIV	JIS	UK	-55 ~ +125	20	−750±250ppm/°C	±0.25∞E	С
UK	EIA	U2K	-55 ~ +125	25	— /50±250ppm/ C	±0.25pF	C
SL	JIS	SL	-55 ~ +125	20	+350~-1000ppm/°C	±5%	J

6 Series code

*Super low distortion multilayer ceramic capacitor

eaper terr dieter	are in a surface of the surface of t
Code	Series code
SD	Standard

•Medium-High Voltage Multilayer Ceramic Capacitor

Code	Series code
SD	Standard

7Nominal capacitance

Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	10,000pF
104	0.1 μ F
105	1.0 <i>μ</i> F
106	10 μ F
107	100 μ F

Note : R=Decimal point

8 Capacitance tolerance

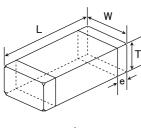
Code	Capacitance tolerance
Α	±0.05pF
В	±0.1pF
С	±0.25pF
D	±0.5pF
F	±1pF
G	±2%
J	±5%
K	±10%
М	±20%
Z	+80/-20%

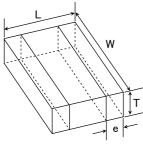
Thickness

Code	Thickness[mm]
K	0.125
Н	0.13
E	0.18
С	0.2
D	0.2
Р	0.3
Т	0.3
K	0.45 (107type or more)
V	0.5
W	0.5
Α	0.8
D	0.85 (212type or more)
F	1.15
G	1.25
L	1.6
N	1.9
Υ	2.0 max
М	2.5

®Special code

Code	Special code
_	Standard


11)Packaging


Code	Packaging
F	φ178mm Taping (2mm pitch)
Т	φ178mm Taping (4mm pitch)
Р	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)
	325 type (Thickness code M)
R	ϕ 178mm Taping (2mm pitch)105type only
	(Thickness code E,H)
W	ϕ 178mm Taping(1mm pitch)021/042type only

12 Internal code

Code	Internal code
Δ	Standard

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

LW reverse type

T (FIA)	Dimension [mm]					
Type(EIA)	L	W	T	*1	е	
□MK021 (008004)	0.25±0.013	0.125±0.013	0.125±0.013	K	0.0675±0.0275	
□MK042(01005)	0.4±0.02	0.2±0.02	0.2±0.02	С	0.1±0.03	
				D		
□VS042(01005)	0.4±0.02	0.2±0.02	0.2±0.02	С	0.1±0.03	
□MK063(0201)	0.6±0.03	0.3±0.03	0.3±0.03	P	0.15±0.05	
				Т		
			0.13±0.02	Н	0.25±0.10	
			0.18±0.02	Е		
☐MK105(0402)	1.0 ± 0.05	0.5±0.05	0.2 ± 0.02	С		
			0.3 ± 0.03	Р		
			0.5 ± 0.05	٧		
□VK105(0402)	1.0±0.05	0.5±0.05	0.5 ± 0.05	W	0.25±0.10	
□WK105(0204)※	0.52 ± 0.05	1.0±0.05	0.3 ± 0.05	Р	0.18±0.08	
□MK107(0603)	1.6±0.10	0.8±0.10	0.45±0.05	K	0.35±0.25	
□WIK107(0003)			0.8 ± 0.10	Α		
□WK107(0306)※	0.8±0.10	1.6±0.10	0.5±0.05	V	0.25±0.15	
□MK212(0805)	2.0±0.10	1.25±0.10	0.45 ± 0.05	K	0.5±0.25	
			0.85±0.10	D		
			1.25±0.10	G		
□WK212(0508)※	1.25±0.15	2.0±0.15	0.85±0.10	D	0.3 ± 0.2	
□MK316(1206)	3.2±0.15	1.6±0.15	0.85±0.10	D	0.5+0.35/-0.25	
			1.15±0.10	F		
			1.6±0.20	L		
□MK325(1210)	3.2±0.30	2.5±0.20	0.85±0.10	D	0.6±0.3	
			1.15±0.10	F		
			1.9±0.20	N		
			1.9+0.1/-0.2	Υ		
			2.5±0.20	М		
□MK432(1812)	4.5±0.40	3.2±0.30	2.5±0.20	М	0.9±0.6	

Note: X. LW reverse type, *1.Thickness code

STANDARD QUANTITY

Type EIA(inch)	EIA (in ah)	Dimension		Standard quantity[pcs]	
	[mm]	Code	Paper tape	Embossed tape	
021	008004	0.125	K	_	50000
040	042 01005	0.2	С		40000
042		0.2	D] –	
063	0201	0.3	Р	15000	_
003	0201		Т	13000	
		0.13	Н	_	20000
		0.18	E	_	15000
105	0400	0.2	С	20000	_
	0402	0.3	Р	15000	_
		0.5	V		_
		0.5	W	10000	
	0204 ※	0.30	Р		
	0603	0.45	K	4000	_
107	0003	0.8	A	4000	
	0306 ※	0.50	V	_	4000
		0.45	K	4000	_
010	0805	0.85	D	4000	
212		1.25	G	_	3000
	0508 ※	0.85	D	4000	_
		0.85	D	4000	_
316	1206	1.15	F	_	3000
		1.6	L	_	2000
		0.85	D		2000
		1.15	F	1	
325 12	1210	1.9	N	1 -	
		2.0 max	Υ	1	
		2.5	М	_	1000
432	1812	2.5	М	_	500

Note: ※.LW Reverse type(□WK)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).