- Product Specification -

Super8™ MCU ROMIess,

" ROM, and Prototyping Device

with EPROM Interface

78800, £8801, 728820, 78822

FEATURES

B Improved Z8® instruction set includes multiply and
divide instructions, Boolean and BCD operations.

® Additional instructions
languages, such as “Forth.”

support threaded-code

m 325 byte registers, including 272 general-purpose
registers, and 53 mode and control registers.

B Addressing of up to 128K bytes of memory.

m Two register pointers allow use of short and fast
instructions to access register groups within 600 nsec.

B Direct Memory Access controlier (DMA).

| Two 16-bit counter/timers.

m Upto 32 bit-programmable and 8 byte-programmable /0
lines, with 2 handshake channels.

| Interrupt structure supports:
O 27 interrupt sources
O 16 interrupt vectors (2 reserved for future versions)
O 8interrupt levels
O Servicing in 800 nsec. (1 level only)

Full-duplex UART with special features.
On-chip oscillator.

20 MHz clock.

8K byte ROM for 28820

GENERAL DESCRIPTION

The Zilog Super8 single-chip MCU can be used for
development and production. It can be used as I/O- or
memory-intensive computers, or configured to address
external memory while still supporting many /0 lines.

E EEEREE E E FEEFT O @

The Super8 features a full-duplex universal asynchronous
receiver/transmitter (UART) with on-chip baud rate
generator, two programmable counter/timers, a direct
memory access (OMA) controller, and an on-chip oscillator.

The Super8 is also available as a 48-pin and 68-pin ROMIess
microcomputer with four byie-wide 11O ports plus a
byte-wide address/data bus. Additional address bits can be

/5 8 7 6 5 4 3 2 1 65867 66 65 64 63 5251\

NC | 10 60 | NC
Vee § 11 59 § NC
ROMless { 12 58 | vee
2™ R} 57 § Pos
Piy { 14 s6 | POy
P2 15 55 | P3.
P2s § 16 54 § P35
Vee § 17 53 § AS
GND | 18 SUPERS 52§ 0S
Vee) 19 51 Péo
xTaLz | 20 50 | P4
xtaLt | 21 49 | GND
Pa | 22 48 § GND
Pds faa a7 § P4y
Pag § 24 a6 | P4y
Paz | 25 45 | RIW
NC 26 44 § NC

\27 28 29 30 3t 32 33 34 35 36 37 38 39 40 4y 42 43/

L PLPFIPPEIF LR q'te,p‘ Ry

Figure 1a. Pin Assignments — 68-pin PLCC

configured, up to a total of 16.

w v o o~ - =3 b= - o e -

i aaaoaefREE&E
ROMiess ¢ 7 29[PoS
P16 O 3 veo
P17 [Pos
228 by po7
P25}) Fasg
vee d 78801 P P
GND 3 AS
xtaLz g P oS
XTALLT Py GND
pa7 f =

P22 4's 203 RESET

PS024801-1104

979

P1o []1 a8 [] pop
P12 a7] poy
P []3 (] po,
P[4 a5 {] po;
P[5 44] pos
pis s 337 Pos
Pis []7 42[] pos
P17 |8 211} poy
P2, []o s0i]p3y
P25 []10 39] p3s
+sv [38 AS
xTatz [} 12 SUPERS % [
XTAL1 [[13 36 [] Pdo
Pag [|14 35] pay
Pas 115 4[] anp
pas |16 33{] pa,
pay [J17 32[] pay
P2, 18 3] aw
P3, 19 30 |] RESET
P33 {20 29] p35
P23 [21 28]] p3;
P2y [: 22 27 j P27
P2 |23 26|] P2
P3; [24 251] P3p

Figure 1b. Pin Assignments — 48-pin DIP

+s 1 28 b +5
A]2 27|} +5
A7 E 3 26 :] A
As{]a 25] As
As s 24] Ag
A[s 23 [A
AsE? P,fz;'?' 22{] oF
A28 EPROM 21[] Ay
ay] o SOCKET S E
Ao [10 181} o,
oo [11 8 [] o6
o, 12 7 13 os
o, [13 16] o,
anp [14 151 b,

30 11
——§ RESET +5V fa——
TIMING 3 o f e onple3t_. | POWER
CONTROL o XTALS i
38 | __ 12 } CLOCK
As XTALZ f—>
48 22
POy P20 |-t
47
~—1 PO, P2y <i>
LU P9 P2, fetom
4
LI PYS P23 |Zm
PORTO 44 9 PORT 2
—~—{ PO, P2y i
43 Pos P25 fwl0
<2, p2s | 2w
LI Pl P27 |2
1 SUPERS 25
~—»{ P1, P3g |
i S P P, fe2im
<—3> Piy P3; <—1—9—<>
- P1s p3; |20
PORT ¢ 5 40 PORT 3
~—1 P1, P34 fa—
6
—f Py P3s DL
7
~—»1 P1g P3g &»
]
<~ Py f<2a
36 14
P4g Py f—
35 15
PORT 4 - P4 P45 PORT 4
()) «Zwdpy, Pag faton [U2
7
<)o, pay |t
Figure 2. Pin Functions
~—4 Dy Aol —
< D, At
- D, Azl
- Dy Asf—
DATA A
-—— Dg 4 | e
~— Ds As|w— o
] PROTOPACK Agl g
Ds EPROM N ADDRESS
“—% SOCKET T
—»] OE Ao e
GND { —»{ CE As| —
~—»| GND A10 |t
—a| +5V A1t e
POWER { —»| +5V A2 f—
—»1 +5V Ai3 b—

Figure 3. Pin Assignments—28-Pin Piggyback Socket

Figure 4. Pin Functions—28-Pin Piggyback Socket

Protopack

This part functions as an emulator for the basic
microcomputer. It uses the same package and pin-out as
the basic microcomputer but also has a 28-pin “piggy back”
socket on the top into which a ROM or EPROM can be
installed. The socket is designed to accept a type 2764
EPROM.

This package permits the protopack to be used in prototype
and final PC boards while still permitting user program

development. When a final program is developed, it can be
mask-programmed into the production microcomputer
device, directly replacing the emulator. The protopack part
is also useful in. situations where the cost of mask-
programming is prohibitive or where program flexibility is
desired. '

980

PS024801-1104

1o
{BIT PROGRAMMABLE)

FRRRRRe!

=
ﬁ

XTAL AS DS R/W RESET

titttd

PORT 4

MACHINE TIMING AND
INSTRUCTION CONTROL

UART

ALY

FLAGS 28822 _'L1—4> ADDRESS

COUNTER/
TIMERS

INTERFACE

‘h,‘B_ DATA

2}

REGISTER
POINTERS

INTERRUPT
CONTROL

REGISTER FILE :‘]

272x8-BIT

PROGRAM
COUNTER

T T AT AT

gt

g

1

1

PORT3 PORT2

PORT O

PORT 1

T

170
(BIT PROGRAMMABLE}
OR CONTROL

H

ADDRESS OR 1/0
{BIT PROGRAMMABLE}

ADDRESS/DATA OR 1/0
(BYTE PROGRAMMABLE)

Z-BUS WHEN USED AS
ADDRESS/DATA BUS

Figure 5. Functional Block Diagram

ARCHITECTURE

The Super8 architecture includes 325 byte-wide internal
registers. 272 of these are available for general purpose
use; the remaining 53 provide control and mode functions.

The instruction set is specially designed to deal with this
large register set. It includes a full complement of 8-bit
arithmetic and logical operations, including multiply and
divide instructions and provisions for BCD operations.
Addresses and counters can be incremented and
decremented as 16-bit quantities. Rotate, shift, and bit
manipulation instructions are provided. Three new
instructions support threaded-code languages.

The UART is a full-function multipurpose asynchronous
serial channel with many premium features.

The 16-bit counters can operaie independently or be
cascaded to perform 32-bit counting and timing operations.
The DMA controller handles transfers to and from the
register file or memory. DMA can use the UART or one of two
ports with handshake capability.

The architecture appears in the block diagram (Figure 5).

PIN DESCRIPTIONS

The Super8 connects to external devices via the following
TTL-compatible pins:

AS. Address Strobe (output, active Low). ASis pulsed
Low once at the beginning of each machine cycle. The
rising edge indicates that addresses RW and DM, when
used, are valid.

DS. Data Strobe (output, active Low). DS provides timing
for data movement between the address/data bus and
external memory. During write cycles, data output is valid at
the leading edge of DS. During read cycles, data input
must be valid prior to the trailing edge of DS.

P0y-P0;, P1g-P17, P25-P2;, P3¢-P3;, P4y-Pdy. Port //O
Lines (input/output). These 40 lines are divided into five 8-bit
110 ports that can be configured under program control for
11O or external memory interface.

In the ROMless devices, Port 1 is dedicated as a
multiplexed address/data port, and Port 0 pins can be
assigned as additional address lines; Port O non-address
pins may be assigned as I/O. In the ROM and protopack,
Port 1 can be assigned as input or output, and Port O can be
assigned as input or output on a bit by bit basis.

PS024801-1104

981

Ports 2 and 3 can be assigned on a bit-for-bit basis as
general /O or interrupt lines. They can also be used as
special-purpose /O lines to support the UART,
counter/timers, or handshake channels.

Port 4 is used for general I/O.

During reset, all port pins are configured as inputs (high
impedance) except for Port 1 and Port O in the ROMless
devices. In these, Port 1 is configured as a multiplexed
address/data bus, and Port 0 pins POy-P04 are configured
as address out, while pins POg-P0; are configured as inputs.

RESET. Reset (input, active Low). Reset initializes and starts
the Super8. When it is activated, it halts all processing; when

it is deactivated, the Super8 begins processing at address
0020y.

ROMless. (input, active High). This input controls the
operation mode of a 68-pin Super8. When connected to Ve,
the part will function as a ROMless Z8800. When connected
to GND, the part will function as a Z8820 ROM part.

R/W. Read/Write (output). RAW determines the direction of
data transfer for external memory transactions. It is Low
when writing to program memory or data memory, and High
for everything else.

XTAL1, XTAL2. (Crystal oscillator input) These pins
connect a parallel resonant crystal or an external clock
source to the on-board clock oscillator and buffer.

REGISTERS

The Super8 contains a 256-byte internal register space.
However, by using the upper 64 bytes of the register space
more than once, a total of 325 registers are available.

Registers from 00 to BF are used only once. They can be
accessed by any register command. Register addresses CO
to FF contain two separate sets of 64 registers. One set,
called control registers, can only be accessed by register
direct ccmmands. The other set can only be addressed by
register indirect, indexed, stack, and DMA commands.

The uppermost 32 register direct registers (EO to FF) are
further divided into two banks (0 and 1), selected by the
Bank Select bit in the Flag register. When a Register Direct
command accesses a register between EQ and FF, itlcoks at
the Bank Select bit in the Flag register to select one of the
banks.

The register space is shown in Figure 6.

SET ONE
l SET TWO
FFy FFy
~4— BANK1
MODE AND BANKO
CONTROL REGISTERS
(REGISTER ADDRESSING ONLY)
I DATA REGISTERS

EOy (INDIRECT REGISTER, INDEXED,
DFy STACK OR DMA

SYSTEM REGISTERS: ACCESS ONLY}

STACK, FLAGS, PORTS, ETC.
(REGISTER ADDRESSING ONLY)

[le
CFy

WORKING REGISTERS

(WORKING REGISTER

ADDRESSING ONLY)
COn . COy
256
BFy BYTES
N DATA REGISTERS o 192
(ALL ADDRESSING MODES) I (BYTES

fele)

Figure 6. Super8 Registers

982

PS024801-1104

Working Register Window

Control registers R214 and R215 are the register pointers,
RPO and RP1. They each define a moveable, 8-register
section of the register space. The registers within these
spaces are called working registers.

Working registers can be accessed using short 4-bit
addresses. The process, shown in section a of Figure 4,
works as follows:

® The high-order bit of the 4-bit address selects one of the
two register pointers (0 selects RPO; 1 selects RP1).

m The five high-order bits in the register pointer select an
8-register (contiguous) slice of the register space.

® The three low-order bits of the 4-bit address select ore of
the eight registers in the slice.

The net effect is to concatenate the five bits from the register
pointer to the three bits from the address to form an 8-bit
address. As long as the address in the register pointer
remains unchanged, the three bits from the address will
always point to an address within the same eight registers.

The register pointers can be moved by changing the five
high bits in control registers R214 for RPO and R215 for RP1.

The working registers can also be accessed by using full
8-bit addressing. When an 8-bit logical address in the range
192 to 207 {CO to CF) is specified, the lower nibbie is used
similarly to the 4-bit addressing described above. This is
shown in section b of Figure 7.

S —
4

RPO (R214)
RP1 (R215)
SELECTS
RPO OR RP1
ADDRESS OPCODE

———

HEERREER

T 4-BIT ADDRESS PROVIDES 3 LOW-ORDER BITS

REGISTER POINTER PROVIDES
5 HIGH-ORDER BITS

TOGETHER THEY CREATE
8-BIT REGISTER ADDRESS

a. 4-Bit Addressing

RPO (R214)
RPt (R215)

SELECTS
RPO ORRP1

ADDRESS

—
CTeTol T T T] esfu nooness
3 LOW-ORDERBITS

REGISTER POINTER PROVIDES
5 HIGH-ORDER BITS
/—-Abﬂ

8-8IT PHYSICAL ADDRESS

b. 8-Bit Addressing

Figure 7. Working Register Window

PS024801-1104

983

Since any direct access fo logical addresses 192 to 207 Register List

involves the register pointers, the physical registers 192 to
207 can be accessed only when selected by a register

Table 1 lists the Super8 registers. For more details, see

poinier. After a reset, RPO points to R192 and RP1 points to Figure 8.
R200.
Table 1. Super-8 Registers
Address
Decimal Hexadecimal Mnemonic Function
General-Purpose Registers
000-192 00-BF — General purpose (all address modes)
192-207 CO-CF - Working register (direct only)
192-255 CO-FF - General purpose (indirect only)
Mode and Control Registers :
208 Do PO Port 0 I/0 bits
209 D1 P1 Port 1 (/O only)
210 D2 P2 Port 2
211 D3 P3 Port 3
212 D4 P4 Port 4
213 D5 FLAGS System Flags Register
214 D6 RPO Register Pointer 0
215 D7 RP1 Register Pointer 1
216 D8 SPH Stack Pointer High Byte
217 D9 SPL Stack Pointer Low Byte
218 DA 1PH Instruction Pointer High Byte
219 OB IPL Instruction Pointer Low Byte
220 bC IRQ Interrupt Request
221 DD IMR interrupt Mask Register
222 DE SYM System Mode
224 EO0 BankO coCcY CTR 0 Control
Bank 1 COM CTR 0 Mode
225 E1 Bank0 CiCT CTR 1 Control
Bank 1 CtM CTR 1 Mode
226 E2 Bank0 COCH CTR 0 Capture Register, bits 8-15
Bank 1 CTCH CTR O Timer Constant, bits 8-15
227 E3 BankO CoCL CTR 0 Capture Register, bits 0-7
Bank 1 CTCL CTR 0 Time Constant, bits 0-7
228 E4 BankO CiCH CTR 1 Capture Register, bits 8-15
Bank 1 C1TCH CTR 1 Time Constant, bits 8-15
229 E5 BankO C1CL CTR 1 Capture Register, bits 0-7
Bank 1 C1TCL CTR 1 Time Constant, bits 0-7
235 EB BankO utC UART Transmit Control
236 EC BankO URC UART Receive Control
237 ED BankO UIE UART Interrupt Enable
238 EF BankO Uio UART Data
240 FO BankQ POM Port 0 Mode
Bank 1 DCH DMA Count, bits 8-15
241 F1 BankO PM Port Mode Register
Bank 1 DCL DMA Count, bits 0-7
244 F4 Bank0O HOC Handshake Channel 0 Contro!
245 F5 BankO H1C Handshake Channel 1 Control
246 F6 BankO P4D Port 4 Direction
247 F7 BankO P40D Port 4 Open Drain
248 F8 Bank0 P2AM Port 2/3 A Mode
Bank 1 UBGH UART Baud Rate Generator, bits 8-15

984

PS024801-1104

Table 1. Super-8 Registers (Continued)

Address

Decimal Hexadecimal Mnemonic

Function

Mode and Control Registers (Continued)

249 F9 BankO P2BM
Bank 1 UBGL
250 FA BankO P2CM
Bank 1 UMA
251 FB BankO P2DM
Bank 1 UMB
252 FC Bank0Q P2AIP
253 FD BankO P2BIP
254 FE BankO EMT
Bank 1 WUMCH
255 FF BankO IPR
Bank 1 WUMSK

Port 2/3 B Mode

UART Baud Rate Generator, bits 0-7
Port 2/3 C Mode

UART Mode A

Port 213 D Mode

UART Mode B

Port 213 A Interrupt Pending
Port 2/3 B Interrupt Pending
External Memory Timing
Wakeup Match Register
Interrupt Priority Register
Wakeup Mask Register

MODE AND CONTROL REGISTERS

R213 (D5) FLAGS
SYSTEM FLAGS REGISTER

[o, e Ds|04 D;lDzI[h]Dn

CARRY FLAG —] BANK ADDRESS
ZERO FLAG FAST INTERRUPT STATUS
SIGNFLAG HALF-CARRY FLAG

OVERFLOW FLAG

DECIMAL ADJUST

R214 (D6} RPO
REGISTER POINTER 0

[or [os [os o foa [or [ou oo |
(RP3-RP7)——~——] L— NOT USED

A215 (D7) RP1
REGISTER POINTER 1

FErRE]

(RP3-AP7) ———J L— NOT USED

R216 (D8) SPH
STACK POINTER

FElllEe]

L_—_ HIGH BYTE (SP8-SP15)

R217 (09) SPL
STACK POINTER

[07 [Dngs[DdIDJTDZIDV [Dol
; LOW BYTE (SPO-SP7)

R218 (DA) IPH
INSTRUCTION POINTER HIGH

Flele o]

l—_— HiGH BYTE (IP8-IP15)

R219 (DB) IPL
INSTRUCTION POINTER LOW

ID7IDSIDS D, DJ]Dleq lod
\—LOW BYTE (PO-P7)
R220 (DC) IRQ

INTERRUPT REQUEST (READ ONLY)

D7 Dles‘DqnglD;][tho]

LEVEL 7 L LEVEL O
LEVEL 6 LEVEL1
LEVEL S LEVEL 2

LEVEL 4 LEVEL3

R221 (DD)IMR /
INTERRUPT MASK

Elel [l]

LEVEL 7 —l L LEVEL O
LEVEL 6 LEVEL 1

LEVEL 5 LEVEL 2

LEVEL 4 LEVEL?J

Figure 8. Mode and Control Registers

PS024801-1104

985

MODE AND CONTROL REGISTERS (Continued)

R222 (DE) SYM
SYSTEM MODE

|B7le[Us—‘04 DJ|02!D||DO

= GLOBAL INTERRUPT ENABLE
NOT USED = FAST INTERRUPT ENABLE
FAST INTERRUPT SELECT

R224, BANK 0 (E0) COCT
COUNTER 8 CONTROL

[07 06|05|04|03[02]n,|no

0 = SINGLE CVCLE L = ENABLE COUNTER
= CONTINUOUS
READ 1 = END OF COUNT
WRITE 1 = RESET END OF COUNT
0 = COUNT DOWN
1 = COUNT UP 1 = ZERO COUNT INTERRUPT ENABLE
1 = LOAD COUNTER 1 = SOFTWARE CAPTURE
1 = SOFTWARE TRIGGER

R224 BANK 1 (E0) COM
COUNTER 0 MODE

Lor[oe [os [ox [os oa o [0

INPUT PIN ASSIGNMENTS: ! CAPTURE MODE:
D7 Dg D5 Da P27 P25 00 = NO CAPTURE
o 0 o olvo 7 01 = CAPTURE ON RISING
EDGE OF P27
6 00 1|U0 TRIGGER
10 = BI-VALUE MODE
0 0 1 0|GATE o
11 = CAPTURE ON BOTH
6 0 1 1|GATE TRIGGER CApTORE ON
o1 0 oo COINPUT 7
0 t 0 3|TRIGGER | CoINPUT
0+ 1t 0}GATE COINPUT 0 = EXTERNAL
0 1 1t 1|GATE/ UP/DOWN CONTROL P27
TRIGGER | COINPUT 1 = PROGRAMMED
1.0 0 0|COOUTPUT | 1O UP/DOWN CONTROL
1.0 0 1[COOUTPUY | TRIGGER
1 0 1 o|cooutput | GATE 1 = ENABLE RETRIGGER
1 0 1 1|COOUTPUT | GATE/TRIGGER
1 1 0 01{COOUTPUT | COINPUT
1101 UNDEFINED
11 1 0 ——— UNDEFINED
1 1 1 1 — CASCADE COUNTERS —

R225 BANK 0 (E1) C1CT
COUNTER 1 CONTROL

ID7IDGL05104|Dgl02lD|IDO

0 = SINGLE CYCLE—J L 1 = ENABLE COUNTER
1 = CONTINUOUS

READ 1 = END OF COUNT
WRITE 1 = RESET END OF COUNT
0 = COUNT DOWN

1 = COUNTUP 1 = ZERC COUNT INTERRUPT ENABLE

1 = LOAD COUNTER 1 = SOFTWARE CAPTURE

1 = SOFTWARE TRIGGER

Figure 8. Mode and Control Registers (Continued)

986 PS024801-1104

MODE AND CONTROL REGISTERS (Continued)

INPUT PIN ASSIGNMENTS:

D7 Dg D5 Dy P37 P3¢
6 0 0 0§10 o
0 0 0 1§{K0 TRIGGER
0 0 1 O}GATE uo
0 0 1 1{GATE TRIGGER
0 1 0 0jV0 COINPUT
0 1 0 1}TRIGGER COINPUT
0 1 1 0jGATE COINPUT
0 1 1 1]GATE/

TRIGGER COINPUT
1 0 0 0]CoOUTPUT | 11O
1 0 0 1|CoOUTPUT | TRIGGER
1 0 1 0|CoOUTPUT | GATE
1 0 1 1]|CoOUTPUT | GATE/TRIGGER
1 1 0 0]|CeOUTPUT | COINPUT
1101 UNDEFINED
1110 UNDEFINED
11 11

UNDEFINED

R226 BANK 0 (E2) COCH
COUNTER 0 CAPTURE

[5- ToeJos [ox [0 [o: o [o0]

(

HIGH BYTE {C0Cg-COCys)

R226 BANK 1 (E2) COTCH
COUNTER 0 TIME CONSTANT

[Dles|Dle4ID3lD2|D1[Dal

(

HIGH BYTE (COTCy-COTCys)

R227 BANK 0 (E3) COCL
COUNTER 0 CAPTURE

[o- o [5: [o: [os [0 [o: [o0]

F

LOW BYTE (C0C(-COC7)

R227 BANK 1 (E3) COTCL
COUNTER 0 TIME CONSTANT

Bl elo o[- [o15]

(

LOW BYTYE (COTCo-COTC)

R228 BANK 0 (E4) C1CH
COUNTER 1 CAPTURE

Elle o]

(

HIGH BYTE (C1C5-C1C1s)

R228-BANK 1 (E4) C1TCH
COUNTER 1 TIME CONSTANT

Io,los Dsloalﬂarozlfhll)gl

(

HIGH BYTE (C17Cg-C1TC15)

R225 BANK 1 (E1) C1M
COUNTER 1 MODE

[o:ToeTos [oro: [o: [0 |

CAPTURE MODE:

00 = NO CAPTURE

01 = CAPTURE ON RISING
EDGE OF P3;

10 = BI-VALUE MODE

11 = CAPTURE ON BOTH
EDGES OF P37

_]

0 = EXTERNAL
UP/DOWN CONTROL P37
1 = PROGRAMMED
UP/DOWN CONTROL

t = ENABLE RETRIGGER

R229 BANK 0 (ES} C1CL.
COUNTER 1 CAPTURE

[D7‘DGIDSiD4IDE]DZlD‘ |DnJ
L—7 LOW BYTE (C1Co-C1C7}

R229 BANK 1 (E5) C1TCL
COUNTER 1 TIME CONSTANT

CEErbEEE]

L—— LOW BYTE (C1TCy-C1TC7)

R235 BANK 0 (€B) UTC
UART TRANSMIT CONTROL

|D7 Dslos Dy '33102101]00]

|

TRANSMIT DATA SELECT: l_ 1 = TRANSMIT DMA ENABLE
0 = OUTPUT P3; DATA
1 = OUTPUT TRANSMIT DATA 1 = TRANSMIT BUFFER EMPTY

1 = SEND BREAK 1 = ZERO COUNT
STOP BITS:

0 = 1STOP BIT

1 = 2STOP BITS

1 = TRANSMIT ENABLE

1 = WAKE-UP ENABLE

R236 BANK 0 (EC) URC
UART RECEIVE CONTROL

lD7JD¢;IDSfD4IDngzID|IDoI

L,

1 = WAKE-UP DETECT —! RECEIVE CHARACTER

AVAILABLE

1 = CONTROL CHARACTER DETECT RECEIVE ENABLE

1 = BREAK DETECT

PARITY ERROR

1 = FRAMING ERROR

OVERRUN ERROR

Figure 8. Mode and Control Registers (Continued)

PS024801-1104

987

MODE AND CONTROL REGISTERS (Continued)

R237 BANK 0 (ED) UIE
UART INTERRUPT ENABLE

|u7ins|05(o4]o3|02|01|Dol

1 = WAKE-UP INTERRUPT ENABLE '—J
1 = CONTROL CHARACTER
INTERRUPT ENABLE
1 = BREAK INTERRUPT ENABLE

1 = RECEIVE ERROR INTERRUPT

L 1 = RECEIVE CHARACTER AVAILABLE
INTERRUPT ENABLE
1 = RECEIVE DMA ENABLE

1 = TRANSMIT INTERRUPT ENABLE

ENABLE

R239 BANK 0 (EF) UtO
UARY TRANSMIT DATA (WRITE)
UART RECEIVE DATA {READ)

[oz [oo [os [ou [oa [0z fou [oo |
l'—w DATA (Dp = LSB)

R240 BANK 0 (F0) POM
PORT 0 MODE

[5:Tox o= [ox [ox [o2] o: [on

P07 MODE J l POg MODE
P04y MODE

PO MODE
POs MODE PO, MODE
P04 MODE P03 MODE

0 = I#O; 1 = ADDRESS

R240 BANK 1 (F0) DCH
DMA COUNT

lwlosloslmloalbzlm 1Uol
L_— HIGH BYTE (DCg-DC15)

R241 BANK 0 (F1) PM
PORT MODE (WRITE ONLY)

DgID’lD'ID"]

EElol
l— PORT 0 DIRECTION

NOT USEDj
0 = OUTPUT

— 1 = INPUT
POAT 1 MODE OPEN-DRAIN PORT 0
00 | oUTRUT 0 = PUSH-PULL
01 [INPUT 1 = OPEN-DRAIN
1x | ADDRESS/DATA OPEN DRAIN PORT 1
0 = PUSH-PULL
1 = OPEN-DRAIN
ENABLE DM P35
0 = DISABLE
1 = ENABLE

R2a1 BANK 1 (F1) DCL
DMA COUNT

107 [05]05 [D.ID: [Dz [D1 1001
i__— LOW BYTE (DCg-DC7)

DESKEW COUNTER —————J

it

= ZERO COUNT INTERRUPT ENABLE

R244 BANK 0 (F4) HOC
HANDSHAKE 0 CONTROL (WRITE ONLY)

BOe

D4 03 DZID1IDO

1= PORT1;0 = PORT 4

DESKEW COUNTER :I 1 = HANDSHAKE ENABLE
(RANGE 1-16)
PORT SELECT:

DMA ENABLE:

1 = ENABLED

0 = DISABLED

MODE:

1 = FULLY INTERLOCKED
0 = STROBED

R245 BANK 0 {F5)H1C
HANDSHAKE 1 CONTROL (WRITE ONLY)

[l oo oo o]or]

L1 = HANDSHAKE ENABLE
(RANGE 1-16)

NOT USED
MODE:

1 = FULLY INTERLOCKED
0 = STROBED

R246 BANK 0 (F6) PaD
PORT 4 DIRECTION

[oroe [o Joufoo Joxfou oo |
L—— Pag-Pa /0 DIRECTION

0 = OUTPUT, 1 = INPUT

R247 BANK 0 (F7) P4OD
PORT 4 OPEN-DRAIN

[or [oe [os o Joa Jor [on oo |
l Pag-P47 OPEN-DRAIN

0 = PUSH-PULL;1 = OPEN-DRAIN

A248 BANK 0 (F8) P2AM
PORT 2/3 A MODE (WRITE ONLY)

BTl
P3, MODE _]

P3o MODE

STl

L P29 MODE

P2y MODE

00 | INPUT

01 | INPUT, INTERRUPT ENABLED
10 | OUTPUT, PUSH-PULL

11§ OUTPUT, OPEN-DRAIN

Figure 8. Mode and Control Registers (Continued)

988

PS024801-1104

MODE AND CONTROL REGISTERS (Continued)

R248 BANK 1 (F8) UBGH R250 BANK 0 (FA) P2CM
UART BAUD-RATE GENERATOR PORT 2/3 C MODE (WRITE ONLY)
{or [oe [os [oe [os [oa s oo {or [o [os Joe [os [or[ou Joo]
[—————— HIGH BYTE (UBGg-UBGis) Pis MODE~—] . L P24 MODE
P34 MODE P25 MODE
00 [INPUT
01 | INPUY, INTERRUPT ENABLED
R248 BANK 0 (F9) P28M 10 | QUTPUT, PUSH-PULL
PORT 2/3 B MODE (WRITE ONLY) 11 | OUTPUT, OPEN-DRAIN
o [oe [os [o Tos oz Jou oo
R250 BANK 1 (FA) UMA
P33 MODE —] L- P2, MODE UART MO(DE)A
P3; MODE » P2; MODE [D7] Ds l Ds 1 D4] Dy] D2 J Dy ID"I

10 [OUTPUT, PUSH-PULL

00 [INPUT l
01 [INPUT, INTERRUPT ENABLED CLOCK RATE L TRANSMIT WAKE-UP VAL

11 | OUTPUT, OPEN-DRAIN D7 Dg
CPENDR RECEIVE WAKE-UP VALU
0 0 =Xt
0 1 =X16
1 0 =X32 1 = EVENPARITY
t 1 =X64

R749 BANK 1 (F9) UBGL
UART BAUD-RATE GENERATOR

= PARITY ENABLE

BITS PER CHARACTER
(o7 [oe [0 o [oa o o1 oo | b,

o0
o1
;———— LOW BYTE (UBGo-UBG7) 10
11

SBITS
6BITS
78ITS
8 BITS

wowon

R251 BANK O (FB) P2DM
PORT 2/3 D MODE (WRITE ONLY)

FEEllEel]

P37 MbDEj Lpzs MODE

P3¢ MODE P27 MODE

00 |INPUT

01 [INPUT, INTERRUPT ENABLED
10 JOUTPUT, PUSH-PULL

11 |OUTPUT, OPEN-DRAIN

R251 BANK 1 (FB) UMB
UART MODE B

R

CLOCK OUTPUT SELECT j L

= LOOPBACK ENABLE

D7 Dg 1 = BAUO-RATE GENERATOR ENABLE
0 0 = P2yDATA
0 1 = SYSTEM CLOCK (XTAL/2) BAUD-RATE GENERATOR SOURCE:
1 0 = BAUD-RATE GENERATOR 0 = P2y (EXTERNAL)
QUTPUT 1 = INTERNAL (XTAL/4)

1 1 = TRANSMIT DATA CLOCK
TRANSMIT CLOCK INPUT SELECT:

1 = AUTO-ECHO 0 = P2,

1 = BAUD-RATE GENERATOR OUTPUT

RECEIVE CLOCK INPUT SELECT:

0= P2y
1 = BAUD-RATE GENERATOR
OUTPUT

Figure 8. Mode and Control Registers (Continued)

PS024801-1104 98

MODE AND CONTROL REGISTERS (Continued)

R252 BANK ¢ (FC) P2AIP
PORT 2/3 AINTERRUPT PENDING (READ ONLY)

lD7leJDSID‘|D’IDZID‘ Dq

R254 BANK 1 (FE) WUMCH
WAKE-UP MATCH REGISTER

Elolloolo]

]* THIS BYTE, MINUS MASKED BITS.

_I i
{
P33 | on .
! IS USED FOR WAKE-UP MATCH
P3; — P2,
P23 P3g

P2; P34
R255 BANK 0 (FF) IPR
INTERRUPT PRIORITY REGISTER
ID’IDBIDSID‘IDJI‘)Z'D‘ D.,I
GROUP PRIORITY l ‘ l I— GROUPA
= IRQO > IRQ1
R253 BANK 0 (FD) P2 BIP D704 Dy g = IRQ1 > IRQO
PORT 2/3 BINTERRUPT PENDING (READ ONLY) B 0 0 =UN DEF,NED
001 =B> GROUP B
o7 | 05 | 05 | s BER {oo] FER M €434 0 = IR2 > (IRQ3.IRCE)
l h 01 ‘1’ -BSASC 1 = (IRQ3,IRQ4) > IRQ2
100 =C>A>B
J I_ 101 =C>B>A L susGROUPB
P37 P2, 110 =A>C>B 0 = IRQ3 >IRQ4
1 1 1 = UNDEFINED 1 = IRQ4 >IRA3
Pa; P25 L—-———-—
v GROUP o
0= mos>(mos IRQ7)
P27 P3s 1 = (IRQ6.IRQ7) > IRQS
P26 P3s susGROUP C
= IRQ6 > IRQ7
1 2 IRes Jinoe
R254 BANKO (FE) EMT R255 BANK 1 (FF) WUMSK
EXTERNAL MEMORY TIMING REGISTER WAKE-UP MASK REGISTER
[o- [oe Jos [oe [oa Tou Tou Tor] {or [[os Jos Jos Jor o Tor |

-1
L DMA SELECT: THESE BITS CORRESPOND TO BITS

0 = REGISTERFILE .
1 = DATA MEMORY IN WAKE-UP MATCH REGISTER; Os

MASK CORRESPONDING MATCH BITS
STACK SELECT:
0 = REGISTER FILE
1 = DATA MEMORY

DATA MEMORY AUTOMATIC WAITS
W

10 = 2 WAITS
11 = IWAITS

_ PROGRAM MEMORY AUTOMATIC WAITS

11 = 3 WAITS

SLOW MEMORY TIMING
0 = DISABLED
1 = ENABLED

EXTERNAL WAIT INPUT
0 = P34 IS NORMAL 1/O
1 =P34 1S EXTERNAL WAIT INPUT

Figure 8. Mode and Control Registers (Continued)

990 PS024801-1104

i/0 PORTS

The Super8 has 40 1/0 lines arranged into five 8-bit ports.
These lines are all TTL-compatible, and can be configured
as inputs or outputs. Some can also be configured as
address/data lines.

Each port has an input register, an output register, and a
register address. Data coming into the port is stored in the
input register, and data to be written to a port is stored in the
output register. Reading a port's register address returns the
value in the input register; writing a port’s register address
loads the value in the output register. If the port is configured
for an output, this value will appear on the external pins.

When the CPU reads the bits configured as outputs, the
data on the external pins is returned. Under normal output
loading. this has the same effect as reading the output
register, unless the bits are configured as open-drain
outputs.

The ports can be configured as shown in Table 2.

Table 2. Port Configuration

Port Configuration Choices

0 Address outputs and/or general /O

1 Multiplexed address/data(or 1/O, only for ROM
and Protopack)

2and3 Control /0 for UART, handshake channels, and
counter/timers; also general /O and external
interrupts

4 General /O

Port 0

Port O can be configured as an 1/O port or an output for
addressing external memory; or it can be divided and used as
both. The bits configured as I/O can be either all outputs or all
inputs; they cannot be mixed. If configured for outputs, they
can be push-pull or open-drain type.

Any bits configured for I/O can be accessed via R208. To write
to the port, specify R208 as the destination (dst) of an
instruction; to read the port, specify R208 as the source (src).

Port 0 bits configured as 1/O can be placed under handshake
control of handshake channef 1.

Port O bits configured as address outputs cannot be accessed
via the register.

In ROMless devices, initially the four lower bits are configured
as address eight through twelve.

Port 1

In the ROMless device, Port 1 is configured as a byte-wide
address/data port. It provides a byte-wide: multiplexed
address/data path. Additional address lines can be added
by configuring Port 0.

The ROM and Protopack Port 1 can be configured as above
or as an /O port; it can be a byte-wide input, open-drain
output, or push-pull output. It can be placed under
handshake control or handshake channel 0.

Ports 2 and 3

Ports 2 and 3 provide external control inputs and outputs for

- the UART, handshake channels, and counter/timers. The

pin assignments appear in Table 3.

Bits not used for control /O can be configured as
general-purpose /O lines and/or external interrupt inputs.

Those bits configured for general 1/O can be configured
individually for input or output. Those configured for output
can be individually configured for open-drain or push-pull
output.

All Port 2 and 3 input pins are Schmitt-triggered.
The port address for Port 2 is R210, and for Port 3is R211.

Table 3. Pin Assignments for Ports 2 and 3

Port 2 Port 3
Bit Function Bit Function
0 UART receive clock 0 UART receive data
1 UART transmit clock 1 UART {ransmit data
2 Reserved 2 Reserved
3 Reserved 3 Reservad
4 Handshake 0 input 4 Handshake 1 input/WAIT
5 Handshake 0 output 5 Handshake 1 output/DM
6 Counter O input 6 Counter 1 input
7 Counter 0 1/O 7 Counter 1 1/0O

Port 4

Port 4 can be configured as /O only. Each bit can be
configured individually as input or output, with either
push-pull or open-drain outputs. All Port 4 inputs are
Schmitt-triggered.

Port 4 can be placed under handshake control of
handshake channel 0. Its register address is R212.

PS024801-1104

991

UART

The UART is a full-duplex asynchronous channel. It
transmits and receives independently with 5 to 8 bits per
character, has options for even or odd bit parity, and a
wake-up feature.

Data can be read into or out of the UART via R239, Bank 0.
This single address is able to serve a full-duplex channel
because it contains two complete 8-bit registers—one for
the transmitter and the other for the receiver.

Pins

The UART uses the following Port 2 and 3 pins:

Port/Pin UART Function
2/0 Receive Clock
3/0 Receive Data
2/1 . Transmit Clock
3/1 Transmit Data
Transmitter

When the UART’s register address is specified as the
destination (dst) of an operation, the data is output on the
UART, which automatically adds the start bit, the
programmed parity bit, and the programmed number of
stop bits. It can also add a wake-up bit if that option is
selected.

if the UART is programmed for a 5-, 6-, or 7-bit character, the
extra bits in R239 are ignored.

Serial data is transmitted at a rate equalt to 1, 1/16, 1/32 or
1/64 of the transmitter clock rate, depending on the
programmed data rate. All data is sent out on the falling
edge of the clock input.

When the UART has no data to send, it holds the output
marking (High). It may be programmed with the Send Break
command to hold the output Low (Spacing), which it
continues unti! the command is cleared.

Receiver

The UART begins receive operation when Receive Enable
(URC, bit O} is set High. After this, a Low on the receive input
pin for fonger than half a bit ime is interpreted as a start bit.
The UART samples the data on the input pinin the middle of
each clock cycle until a complete byte is assembled. This is
placed in the Receive Data register.

Ifthe 1X clock mode is selected, external bit synchronization
must be provided, and the input data is sampled on the
rising edge of the clock.

For character lengths of less than eight bits, the UART
inserts ones into the unused bits, and, if parity is enabled,
the parity bit is not stripped. The data bits, extra ones, and
the parity bit are placed in the UART Data register (UIC).

While the UART is assembling a byte in its input shift register,
the CPU hastime to service an interrupt and manipulate the
data character in UIO.

Once a complete character is assembled, the UART checks
it and performs the following:

& if it is an-ASCIl control character, the UART sets the
Control Character status bit.

E It checks the wake-up settings and completes any
indicated action.

® If parity is enabled, the UART checks to see if the
calculated parity matches the programmed parity bit. If
they do not match, it sets the Parity Error bit in URC
(R236 Bank 0), which remains set until reset by software.

m |t sets the Framing Error bit (URC, bit 4) if the character is
assembled without any stop bits. This bitremains se: until
cleared by software.

Overrun errors occur when characters are received faster
than they are read. That is, when the UART has assembled a
complete character before the CPU has read the current
character, the UART sets the Overrun Error bit (URC, bit 3),
and the character currently in the receive buffer is lost.

The overrun bit remains set until cleared by software.

992

PS024801-1104

ADDRESS SPACE

The Super8 can access 64K bytes of program memory and
64K bytes of data memory. These spaces can be either
combined or separate. If separate, they are controlled by the
DM line (Port P3s), which selects data memory when Low
and program memory when High.

Figure 9 shows the system memory space.

CPU Program Memory

Program memory occupies addresses 0 to 64K. External
program memory, if present, is accessed by configuring
Ports 0 and 1 as a memory interface.

The address/data lines are controlied by AS, DS and RW.

The first 32 program memory bytes are reserved for
interrupt vectors; the lowest address available for user
programs is 32 (decimal). This value is automatically loaded
into the program counter after a hardware reset.

ROMless

Port 0 can be configured to provide from O to 8 additional
address lines. Port 1 is always used as an 8-bit multiplexed
address/data port.

ROM and Protopack

Port 1 is configured as multiplexed address/data or as 1/O.
When Port 1 is configured as address/data, Port 0 lines can
be used as additional address lines, up to address 15.
External program memory is mapped above internal
program memory; that is, external program memory can
occupy any space beginning at the top of the internal ROM
space up to the 64K (16-bit address) limit.

CPU Data Mémory

The external CPU data memory space, if separated from
program memory by the DM optional output, can be
mapped anywhere from 0 to 64K (full 16-bit address space).
Data memory uses the same address/data bus (Port 1) and
additional addresses (chosen from Port 0) as program
memory. Data memory is distinguished from program
memory by the DM pin (P3s), and by the fact that data
memory can begin at address 0000y. This feature differs
from the Z8.

65535 65535
EXTERNAL
PROGRAM
MEMORY EXTERNAL
DATA
MEMORY
THIS BOUNDARY
MAY BE AT 0, OR
8192 DEPENDING ON
ROM SIZE ON-CHIP
32 PROTOPACK
INTERRUPT VECTORS o
0
PROGRAM MEMORY DATA MEMORY

Figure 9. Program and Data Memory Address Spaces

PS024801-1104

993

INSTRUCTION SET

The Super8 instruction set is designed to handle its large
register set. The instruction set provides a full complement
of 8-bit arithmetic and logical operations, including multiply
and divide. 1t supports BCD operations using a decimal
adjustment of binary values, and it supports incrementing
and decrementing 16-bit quantities for addresses and
counters.

It provides extensive bit manipulation, and rotate and shift
operations, and it requires no special /O instructions—the
1/O ports are mapped into the register file.

Instruction Pointer

A special register called the Instruction Pointer (IP) provides
hardware support for threaded-code languages. It consists
of register-pair R218 and R219, and it contains memory
addresses. The MSB is R218.

Threaded-code languages deal with an imaginary
higher-level machine within the existing hardware machine.
The IP acts like the PC for that machine. The command
NEXT passes control to or from the hardware machine to the
imaginary machine, and the commands ENTER and EXIT
are imaginary machine equivalents of (real machine) CALLS
and RETURNS.

If the commands NEXT, ENTER, and EXIT are not used, the
IP can be used by the fast interrupt processing, as
described in the Interrupts section.

Flag Register

The Flag register (FLAGS) contains eight bits that describe
the current status of the Super8. Four of these can be tested
and used with conditional jump instructions; two others are
used for BCD- arithmetic. FLAGS also contains the Bank
Address bit and the Fast Interrupt Status bit.

The fiag bits can be set and reset by instructions.

CAUTION

Do not specify FLAGS as the destination of an
instruction that normally affects the flag bits or the
result will be unspecified.

The following paragraphs describe each flag bit:

Bank Address. This bit is used to select one of the register
banks (0 or 1) between (decimal) addresses 224 and 255. It
is cleared by the SBO instruction and set by the SB1
instruction. :

Fast Interrupt Status. This bit is set during a fast interrupt
cycle and reset during the IRET following interrupt servicing.
When set, this bit inhibits all interrupts and causes the fast
interrupt return to be executed when the IRET instruction is
fetched.

Half-Carry. This bit is set to 1 whenever an addition
generates a carry out of bit 3, or when a subtraction borrows
out of bit 4. This bit is used by the Decimal Adjust (DA)
instruction to convert the binary result of a previous addition
or subtraction into the correct decimal (BCD) result. This
flag, and the Decimal Adjust flag, are not usually accessed
by users.

Decimal Adjust. This bit is used to specify what type of
instruction was executed last during BCD operations, so a
subsequent Decimal Adjust operation can function
correctly. This bit is not usually accessible to programmers,
and cannot be used as a test condition.

Overflow Flag. This flag is set to 1 when the result of a
twos-complement operation was greater than 127 or less
than -128. ltis also cleared to 0 during logical operations.

Sign Flag. Following arithmetic, logical, rotate, or shift
operations, this bit identifies the state of the MSB of the
result. A Q indicates a positive number and a 1 indicates a
negative number.

Zero Flag. For arithmetic and logical operations, this flag is
setto 1 if the result of the operation is zero.

For operations that test bits in aregister, the zero bitis setto 1
if the result is zero.

For rotate and shift operations, this bitis set to 1 ifthe resultis
zero.

Carry Flag. Thisflag is setto 1ifthe result from an arithmetic
operation generates a carry out of, or a borrow into, bit 7.

After rotate and shift operations, it contains the last value
shifted out of the specified register.

It can be set, cleared, or complemented by instructions.

994

PS024801-1104

Condition Codes Addressing Modes

Thetflags C, Z, S, and V are used to control the operation of All operands except for immediate data and conditicn
conditional jump instructions. codes are expressed as register addresses, program
memory addresses, or data memory addresses. The

The opcode of a conditional jump contains a 4-bit field addressing modes and their designations are:

called the condition code (cc). This specifies under which

conditions it is to execute the jump. For example, a Register (R)
conditional jump with the condition code for “equal” after a indirect Register (IR)
compare operation only jumps if the two operands are Indexed (X)
equal. Direct (DA)
i:;ec:)ndition codes and their meanings are given in r:r?ﬁg\é?sftzlél)M)

’ indirect (I1A)

Tabte 4. Condition Codes and Meanings

Binary Mnemonic Flags Meaning

0000 F - Always false

1000 — - Always true

o11t* C C=1 Carry

1111 NC C=0 No carry

0110* VA Z=1 Zero

1110* NZ Z=0 Not zero

1101 PL S=0 Plus

0101 Ml S=1 Minus

0100 ov V=1 Overflow

1100 NOV V=0 No overflow

0110* EQ Z=1 Equal

1110* NE Z=0 Not equal

1001 GE (SXORV)=0 Greater than or equal
0001 LT (SXORV)=1 Less than

1010 GT (ZOR(SXORV))=0 Greater than

0010 LE (ZOR(SXORV))=1 Less than or equal
111" UGE C=0 Unsigned greater than or equal
o111 uLT C=1 Unsigned less than
1011 UGT (C=0ANDZ=0)=1 Unsigned greater than
0011 ULE (CORZ)=1 Unsigned less than or equal

NOTE: Asterisks (") indicate condition codes that relate to two different mnemonics but test the same flags. For example, Z and EQ are both True if the
Zero flag s set, but after an ADD instruction, Z would probabty be used. whilz after a CP irstruction, EQ would probably be used.

PS024801-1104 995

Registers can be addressed by an 8-bit addressinthe range
of 0 1o 255. Working registers can also be addressed using
4-bit addresses, where five bits contained in a register
pointer (R218 or R219) are concatenated with three bits
from the 4-bit address to form an 8-bit address.

Registers can be used in pairs to generate 16-bit program or
data memory addresses.

Notation and Encoding

The instruction set notations are described in Table 5.

Functional Summary of Commands

Figure 10 shows the formats followed by a quick reference
guide to the commands.

Table 5. Instruction Set Notations

Notation Meaning Notation Meaning
cc Condition code (see Table 4) DA Direct address (between 0 and 65535)
r Working régister (between 0 and 15} RA Relative address
b Bit of working register M Immediate
10 Bit 0 of working register IML Immediate long
R Register or working register dst Destination operand
RR Register pair or working register pair (Register pairs sIc Source operand
ahways start on an even-number boundary) @ Indirect address prefix
1A Indirect address SP Stack pointer
fr indirect working register PC Program counter
IR Indirect register or indirect working register P Instruction pointer
fer Indirect working register pair FLAGS Flags register
IRR Indirect register pair or indirect working register pair RP Register pointer
X Indexed # Immediate operand prefix
XS Indexed, short offset % Hexadecimal number prefix
XL Indexed, long offset orPC Opcode
One-Byte Instructions
OFC CCF. DI. El, ENTER, EXIT. IRET. NEXT. NOP.
RCF. RET. SB0. SB1. SCF. WFI
[Last [opc] mc
Two-Byte Instructions
ADC, ADD, AND. CP.LD. LDC, LDCI, LOCD,
[orc”] [Cost T s] {06 {DED. OR, SBC. SUB. TeM. TH- XOR
{_orc] [[sre | gst] LDC.LDCPD. LOCPI, LDE, LDEPD, LDEP}
Core] st RURiC hno A, Swap cLA.sAA. com
f orc] [src] PUSH. SRP, SRPO. SRP1
[_orc 1} [Cdst Tb Jo] srrc.mivm
[orc] [Cast T b [1] BiTs
[Torc] [dst] bunz
. [ec _Torc] [dast__J UR
| dst LOPC l (src] LD
[o Torc] [dst] o
Figure 10. Instruction Formats
996 PS024801-1104

Three-Byte Instructions

ADC. ADD. AND. CP. LD. OR. PUSHUD.

OPC L dst] [_se "] bustiur. sBc. SUB. TCM. M, XOR
ez B e A T
[opc™] [[est [bJo] [src___| BAND.BCP, BOR, BXOR, LDB
[orc 1 [Gre b T1] [dst] BAND.BOR.BTJRT. BXOR, LOB
[opPC] Lse [o]0] [dst } BTIRF
[__opc] [CseTast] [RA] ceie. cPNE
[orc 7] @t [x] [se___]ip.ioc.Loe
[Tore] [x 1 dst] LD.LDC. LDE
[orc] [dst] carL

cc oPC dst JP
Four-Byte Instructions

[[_orc 7§ [esthcoont] [s] [_se] oc.woe l FORLDG. x « EVEN
[of¢) [sreloor] [_ost] [_osi__}uoc.ioe] FORLOE.x = 00O
{ OPC] [Cost_Toooo] - § src] [C__sc _]uioc
[orc "} [Tsrc_Joooo] [dst] [st } Loc

OoPC_~ [est Tooo1] [src] src } Loe
{ opc] [last Jooo1] [dst | | dst] LoE
{ oPC] | dst | [stc] tow

Figure 10. Instruction Formats (Continued)
INSTRUCTION SUMMARY

Addr Mode Opcode

Flags Affected

Addr Mode Opcode

Flags Affected

Instruction Byte Instruction Byte
and Operation dst src (Hex) C Z SV DH and Operation dst src (Hex) C Z S VDH
ADC ds,src {Note 1) 10 * ok Kk — * BOR dst, src 0 (B 07 — % 0 U ——
dst<dst + src + C dst < dst OR src Rb 0
ADD dst,src (Note 1) ojm} * & & x 0 * BTJRF RA 1o 37 - == — —
dst —dst + src ifsrc = 0,PC = PC + dst .
AND dst.src (Note 1) s — %k * 0 — — BTJRT RA b 37 - == — — —
dst < dst AND src ifsrc = 1,PC = PC + dst
BAND dst,src 0 Rb 67 — % 0 U — — BXOR dst, src 0 Rb 27 — % 0 U — —
dst < dst AND src Rb 0 67 dst < dst XOR src Rb 10 27
BCP dst, src 0 Rb 17 — % 0 U— — CALL dst DA F6 - = — - —
dst - src SP+—SP -2 IRR Fa
BITC dst b 57 —%0U-—— é@s?_;;c A D4
dst < NOT dst

CCF EF * — — — — —
BITR dst rb 77— = - — = —

= NOT

dst< 0 ¢ ore

CLR dst R BO -
BITS dst b 77 e = — - — dst <0 B B1
dst <1

PS024801-1104

997

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte ——————— Instruction Byte ————
and Operation dst src (Hex) €CZ S VDH and Operation dst src (Hex) C Z SV DH
COM dst R 60 — % % 0 — — INCW dst RR AO — % X * — —
dst < NOT dst R 61 dst <1 + dst IR Al
CP dst,src (Note 1) AO * * k kK — — IRET (Fast) BF Restored to
dst — src PC «IP before interrupt
CPIE roor 2 — e ——— ;LSAE o FLAG
if dst -~ src = O,then
PC«PC + RA IRET (Normal) BF Restored lo
Ir<tir +1 FLAGS « @SP; SP <SP + 1 betore interrupt
CPIINE p " D _— — _ ___ PC < @SP; SP «+ SP + 2; SMR (0) < 1
if dst — src = O,then JP cc,dst DA cch - === =
PC+~PC + RA ifccis true, (cc=0toF)
Ir<Ir+1 PC « dst IRR 30
DA dst R 40 *x * * U — — JR cc,dst RA ccB - - = — =
dst — DA dst IR 41 ifccis true, (cc=0toF)
DEC dst R 00 — % % % — — PC-PC+d
dst < dst - 1 IR 01 LD dst src r M C ——=—=— ==
DECW dist AR 80 —waw_— T rof e
dst ~ dst — 1 IR 81 Ror 9
steast- ‘ (r=010F)
[8]] 8F @ - — r iR Cc7
SMR(0) < 0 IR 1 D7
DIV d R R E4
st. sre R R ES
dst = src RR R 94 * k Kk k — — R M E6
ds(l](Uppe;) - RR IR 95 R M D6
d ULo“e” - RR M 6 R A FS
s; (ow-er()j 9 ‘ X 87
emainaer x r 97
DiNZ"?St RA T BA 0T T LDB dst, src ©0 Rb 47 ——— —— —
;” i 6 : (r=0t0F) dst + src Rb 0 47
PC < PC + dst LDC/LDE 3 frr c3 -
El oF - _ _ _ __ dst < src lrr r D3
SMR (0) < 1 s E7
XS r F7
ENTER 1F o ——— roxi A7
P «SP - 2 x1 r B7
@SP 1P T DA A7
IP < PC DA r B7
PC-@IP LDCOD/LDEDdst,sc r Irr 2 ——————
PP +2
dst < src
EXIT OF e — — o — e =1
P @Sk LDEILDCIdst, sc ¢ ir E3 —— — — — —
SP—SP + 2
dst < src
PC @IP rrerr 4+ 1
IP<IP +2
LD
INC dst] e o CPD/LDEPD dst,src
e —1 Irr f F2 @ —————
dst < dst + 1 (r=0toF) dst < src
R 20
IR 21
998 PS024801-1104

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected

Addr Mode Opcode

Flags Affected.

Instruction Byte Instruction Byte
and Operation dst src (Hex) C Z SVDH and Operation dst src (Hex) C Z S VDH
LDCPYLDEP! dst, src RLC dst R 10 * k k k — —
merm+ 1 fireoor F3 @ - dst(0)«C IR 11
dst < src C«dst(7)
dst(N+1) < dst(N
LDW dst, src RR RR C4 ———— — oot 1) = dot®y
dst < src RR IR C5
RR IMM C6 RR dst R EO * *k k x* — —
MULT dst, src RR R 84 x0xwx—— C—080 R o
dst (7) < dst (0)
RR IR 85
AR M a6 dst (N) < dst (N + 1)
N=0to6
NEXT OF = — — _ —_ _
PG~ @IP RRC dst R co * k k x — —
PP 4 2 C «dst (0) IR C1
dst(7) < C
NOP FF —— — — — — dst(N) < dst (N + 1)
OR dst,src (Note 1) 40 —%x%x0—— N=0W6
dst « dst OR src SBO 4F - -
POP dst R 50 @ —— ——— — BANK -0
dst — @SP; IR 51 SB1 5 — -
SP <SP + 1 BANK 1
POPUD dst, src R IR 92 @ - —— SBC dst,src (Note 1) 30 * * * x 1 %
dst < src dst < dst — src - C
IR« —
AoR-1 SCF DF 1T ——— ——
POPUI dst, sic R IR 93 @ @—— - C+1
dst —
e SRA ds R D0 % % %0 ——
dst (7) < dst(7) IR D1
PUSH sic R 70 - —— C «—dst{0)
SP <SP - 1, @SP +src IR al dst (N} < dst(N + 1)
PUSHUD dst.src IR 82— ——— N =06
IR<IR -1 SRP src M 3t - = — - — —
dst < src RPO «iIM
PUSHUI dst, src R R 83 ————— APT<IM+8
IR<IR+ 1 SRPO IM 3 - == - — —
dst + src RPQ < IM
ACF CF 0 ————— SRP1 M 3 e
C+0 RP1 <M
RET AF = e — SUB dst,src (Note 1) 20 * % % & 1 %
PC < @SP;SP <SP + 2 dst + dst — src
RL dst R 20 * k Kk k — —
C ~dst(7) IR 91
dst (0) «— dst (7)
dst (N + 1) < dst (N)
N=0to6

PS024801-1104

999

INSTRUCTION SUMMARY (Continued)

Table 6. Second Nibble

Addr Mode Opcode Flags Affected
Instruction Byte
and Operation dst scc (Hex) CZSVDH Addr Mode Lower
dst src Opcode Nibble
SWAP dst R Fo — % * U — —
dst (0-3) < dst(4-7) IR F1 r r
TCM dst,src (Note 1) 60 — % % 0 — — . Ir
NOT dst) AND
(st) SIC R R
TM dst,sic {Note 1) 70 — % % 0 ——
dst AND src R IR
WFI F o ————— R M [
_ — For example, to use an opcode represented as xC3 with an "RR”
gg?-d;ts;%}? src (Note 1) 80 *x addressing mode, use the opcode “x4."

NOTE 1: These instructions have an identical set of addressing modes,

which are encoded for brevity. The first opcode nibble identifies
the command, and is found in the table above. The second
nibble, represented by a 3, defines the addressing mode as

shownin Table 6.:

0
1

*
U

= Cleared to Zero
=-Setto One
= Unaffected

= Set or reset, depending on result of operation.

= Undefined

PS024801-1104

SUPER-8 OPCODE MAP

Lower Nibble (Hex)
0 1 2 3 4 5 6 7 8 9 A B Cc D E F
6 [6 6 10 10 10 10 6 6 1210 12110 6 12/10 8 14
0 DEC DEC ADD ADD ADD ADD ADD BOR* LD LD DINZ JR LD JP INC NEXT
Ry 1Ry ry.rp [SRIPY RoRy | IR2.Ry | RyM 0By .Ry 2.Ry r1.RA | cc.RA 1. IM cc.DA sl
6 5 6 ' 6 10 10 10 10 20
1 RLC RLC ADC ' ADC ADC ADC | ADC BCP ENTER
Ry IRy .12 rydrp AzRy | IR2.Ry | RyM | r1.b.Ry
6 6 6 6 10 10 10 10 22
2 iNC INC suB sus sus SuB SUB | BXOR" EXIT
R, IRy .02 rydrp Ra.Ry IR2.R4 Ry.iM ro-Ry
10 6 6 19 10 10 6
3 | o | MTE | spc | osee | sec | sec | sac “TE wri
IRR, .02 rldrg | R2By | IRZRy | RyIM
6 6 6 6 10 10 10 10 6
4 DA [+]. OR OR OR OR OR LDB" $80O
R, IRy 1y ry.drp RoRy 1Ro.Ry Rq.IM ro-Rp
10 10 [6 10 10 10 8 6
5 pPOP POP AND AND AND AND AND BITC SBi
R, IRy F1.02 fylrp R3.Ry iRy, R,y Ry.im r.b
6 6 6 6 10 10 10 10
< 6 coM COoM TCM TCM M TCM TCM | BAND*
% Ry IRy i | o | BBy | IRaRy | RyM | Ry
b 10112 | 12114 6 6 10 10 10
[
B 7 |PusHipusk| Tm | TM | Tm | 7w | 7w | NOTE
e} Ry 1Ry oz | o | ReRy | RaR | RiM
E 10 10 10 10 24 24 24 10 6
g_ 8 DECW | DECW PUSHUD|PUSHUI! MULT | MULT | MuLT LD ol
o RR, N 1R1.Ry | IR).Ry { Ro.BR; |IRZ.RR, | IMAR, | ryxrp
oo}
6 6 10 10 28i12 | 2812 | 28112 10 6
S RL RL POPUD | POPU! D DIV Div LD El
Ry IRy | IRzRy | IR2Ry | Rp.RRy [1R.AR) | IMRRy | rpxr
10 10 6 6 i 10 10 14
A | INCW | INCW | cP cp cp cp cp N%TE RET
RRy IFy frp | oy | RaRy | IR.A, | RyIM
6 6 € 6 1¢ 10 10 NOTE 16/6
B CLR CLR XOR XOR XOR XOR XOR £ IRET
R, IR, ry.12 nilp | RoRy | IRRy | RyIM
6 € 16/18 2 10 t0 12 6 6
[RRC RRC | CPE | LDC* | LDW | LDW | LDW LD RCF
Ry Ry e RA Lyl 1ARZ, ARy | IRy RRy [RARIMLY rydrp
6 € 16/18 12 20 10 .6 6
D SRA SRA [CPIUNE| LDC" CALL LD jb) SCF
Ry 1Ry g RAY wp iy 1A, 1Ry.IM lrq.rp
6 6 16 16 10 10 10 18 6
E RR RR | LDCD* | LDCI" LD LD LD Lbc* CCF
R, IR; fdirg e | Ra By | IR2Ry] RyIM [y ldrrgxs
8 8 16 16 18 10 18 18 6
F SWAP | SWAP [LDCPD*[LDCPI* | CALL LD CALL LDC* NOP
R, IRy 121y .0y IRRy R2.IR, DA, {rolrryxs Y i Y Y v
Ti6ne | 1608) 8 6 6 6 Legend: ég"‘:"“;:“:
NOTEA | BTJRF | BTURT | NOTEB | BITR | BITS | NOTEC | SRP | smpo | smp1 r = 4-bit address ‘Rz
IE'D‘RA r2.0 RA b b ™ M M R = 8-bitaddress 1sBOR1.b.Ry
b = bit number or BOR1p.b.Ry
Ry orry = dstaddress LDC 1q.lrrp
Rporrp = srcaddress 15LOC 1y by = program
20 20 20 20 of LDE ry.Irrp = data
NOTED LoC* LDC* NOTE E Loc* Loc-
rytrepxb| ry. DAy el] rp. DAy Sequence:

Ogcode. first. second. third operands

NOTE: The blank areas are not defined

Figure 11. Opcode Map

PS024801-1104

1001

INSTRUCTIONS

Table 7. Super8 Instructions

Mnemonic Operands Instruction Mnemonic Operands nstruction

Load Instructions Program Control Instructions

CLR dst Clear BTJRT dst, src Bit test jump relative on True

LD dst, src Load BTJRF dst, src Bit test jump relative on Faise

LDB dst, src Load bit CALL dst Call procedure

LDC dst, src Load program memory CPIJE dst, src Compare, increment and jump on

LDE dst, src Load data memory equal

LDCD dst, src Load program memory and CPIUJNE dst, sre Compare, increment and jump on
decrement non-equal

LDED dst, src Load data memory and DJNZ r, dst Decrement and jgmp on non-zero
decrement ENTER Enter

LDCI dst, src Load program memory and EXIT Exit
increment IRET Return from interrupt

LDEI dst, src Load data memory and increment JP ce. dst Jump on condition code

LDCPD dst, src Load program memory with JP dst Jump unconditional
pre-decrement JR cc, dst Jump relative on condition code

LDEPD dst, src Load data memory with JR dst Jump relative unconditional
pre-decrement NEXT Next

LDCPI dst, src Load program memory with RET Return
pre-increment WFi Wait for interrupt

LDEPI dst, src Load data memory with Bit Manipulation Instructions
pre-increment BAND dst. src Bit AND

LDW dst, src Load word BCP dst, src Bit compare

PoP dst Pop stack BITC dst Bit complement

POPUD dst, src Pop user stack (dacrement) BITR dst Bit reset

POPUI dst, src Pop user stack (increment) BITS dst Bit set

PUSH src Push stack BOR dst, src Bit OR

PUSHUD dst, src Push user stack (decrement) BXOR dst. src Bit exclusive OR

PUSHUI dst, src Push user stack (increment) CM dst, src Test complement under mask

™ dst, src Test under mask

Arithmetic Instructions

ADC dst, src Add with carry
ADD dst, src Add

CcP dst, src Compare

DA dst Decimal adjust
DEC dst Decrement
DECW dst Decrement word
DIV dst, src Divide

INC dst Increment

INCW dst Increment word
MULT dst, src Multiply

SBC dst, sic Subtract with carry
suB dst, src Subtract
Logical instructions

AND dst, src Logical AND
COM dst Complement
OR dst, src Logical OR

XOR dst, src Logical exclusive

Rotate and Shift Instructions

RL dst Rotate left

RLC dst Rotate left through carry
RR dst Rotate right

RRC dst Rotate right through carry
SRA dst Shift right arithmetic
SWAP dst Swap nibbles

CPU Control Instructions .

CCF Complement carry flag
Di Disable interrupts

El Enable interrupts

NOP Do nothing

RCF Reset carry flag

SBO Set bank 0

SB1 Setbank 1

SCF Set carry flag

SRP src Set register pointers
SRPO src Set register pointer zero
SRP1 src Set register pointer one

1002

PS024801-1104

INTERRUPTS

The Super8 interrupt structure contains 8 levels of interrupt,
16 vectors, and 27 sources.

interrupt priority is assigned by level, controlled by the
Intersupt Priority register (IPR). Each level is masked (or
enabled) according to the bits in the Interrupt Mask register
(IMR), and the entire interrupt structure can be disabled by
clearing a bit in the System Mode register (R222).

The three major components of the interrupt structure are
sources, vectors, and levels. These are shown in Figure 10
and discussed in the following paragraphs.

Sources

A source is anything that generales an interrupt. This can be
internal or external to the Super8 MCU. Internal sources are
hardwired to a particular vector and level, while external
sources can be assigned to various external events.
Extemal interrupts are falling-edge triggered.

Vectors

The 16 vectors are divided unequally among the eight
levels. For example, vector 12 belongs to level 2, while levet
3 contains vectors 0, 2, 4, and 6.

The vector number is used to generate the address of a
particufar interrupt servicing routine; therefore all interrupts
using the same vector must use the same interrupt handling
routine.

Levels

Levels provide the top tevel of pricrity assignment. While the
sources and vectors are hardwired within each level, the
priorities of the levels can be changed by using the Interrupt
Priority register (see Figure 8 for bit details).

I more than one interrupt source is active, the sourcé from
the highest priority tevel will be serviced first. If both sources
are from the same level, the source with the lowest vector will
have priority. For example, if the UART Receive Data bit and
UART Parity Error bit are both active, the UART Parity Error
bit will be serviced first because it is vector 16, and UART
receive data is vector 20.

The levels are shown in Figure 12.

INTERRUPY SOURCES

POLLING

VECTORS LEVELS

COUNTER 0 ZERO COUNT

12 1RQ2

EXTERNAL INTERRUPT (P25)
EXTERNAL INTERRUPT (P27)

COUNTER 1 ZERO COUNT

IRQS

EXTERNAL INTERRUPT (P3g)
EXTERNAL INTERRUPT ({P37)

HANDSHAKE CHANNEL 0 ‘
EXTERNAL INTERRUPT (P24)
EXTERNAL INTERRUPT (P25)

HANDSHAKE CHANNEL 1 I

EXTERNAL INTERRUPT (P34)
EXTERNAL INTERRUPT (P3s)

RESERVED

L

L

28 RQ4

HU il

IRQ7

RESERVED

EXTERNAL INTERRUPT (P3,)

1RQ3

EXTERNAL INTERRUPT (P2,)

EXTERNAL INTERRUPT (P23)

EXTERNAL INTERRUPT (P35)

UART RECEIVE OVERRUN

UART FRAMING ERROR
UART PARITY ERROR
UART WAKEUP DETECT

UART BREAK DETECT
UART CONTROL CHAR DETECT

UART RECEIVE DATA
EXTERNAL INTERRUPT (P3q)

EXTERNAL INTERRUPT (P2g)

UART ZERO COUNT
EXTERNAL INTERRUPT (P2,)

UART TRANSMIT DATA
EXTERNALINTERRUPT {P3,)

1RQO
10
_1 16
41
I 18
7 1RQ6
20
—
22
2 iRQ1
_ 26
—t— i®

Figure 12. Interrupt Levels and Vectors

PS024801-1104

1003

Enables
Interrupts can be enabled or disabled as foliows:

= -Interrupt enable/disable. The entire interrupt structure
can be enabled or disabled by setting bit 0 in the System
Mode register (R222).

8 Level enable. Each level can be enabled or disabled by
setting the appropriate bit in the Interrupt Mask register
(R221).

@ Level priority. The priority of each level can be controlied
by the values in the Interrupt Priority register (R255, Bank
0).

= Source enable/disable. Each interrupt source can be
enabled or disabled in the sources’ Mode and Control
register.

Service Routines

Before an interrupt request can be granted, a) interrupts
must be enabled, b) the level must be enabled, c) it must be
the highest priority interrupting level, d) it must be enabled at
the interrupting source, and e) it must have the highest
priority within the fevel.

it all this occurs, an interrupt request is granted.

The Super8 then enters an interrupt machine cycle that
completes the following sequence:

m ltresets the Interrupt Enable bit to disable all subsequent
interrupts.

m It saves the Program Counter and status flags on the
stack.

|t branchesA to the address contained within the vector
location for the interrupt.

m It passes control to the interrupt servicing routine.

When the interrupt servicing routine has serviced the
interrupt, it should issue an interrupt return (IRET)
instruction. This restores the Program Counter and status
flags and sets the Interrupt Enable bit in the System Mode
register.

Fast Interrupt Processing

The Super8 provides a feature called fast interrupt
processing, which completes the interrupt servicing in 6
clock periods instead of the usual 22.

Two hardware registers support fast interrupts. The
Instruction Pointer (IP) holds the starting address of the
service routine, and saves the PC value when afast interrupt
occurs. A dedicated register, FLAG', saves the contents of
the FLAGS register when a fast interrupt occurs.

To use this feature, load the address of the service routine in
the Instruction Pointer, load the level number into the Fast
Interrupt Select field, and turn on the Fast Interrupt Enable
bit in the System Mode register.

When an intarrupt occurs in the level selected for fast
interrupt processing, the following occurs:

®m The contents of the Instruction Pointer and Program
Counter are swapped.

The contents of the Flag register are copied into FLAG
The Fast Interrupt Status Bit in FLAGS is set.

The interrupt is serviced.

When IRET is issued after the interrupt service outline is
completed, the Instruction Pointer and Program Counter
are swapped again.

®m The contents of FLAG™ are copied back into the Flag
register.

®| The Fast Interrupt Status bit in FLAGS is cleared.

The interrupt servicing routine selected for fast processing
should be written so that the location after the IRET
instruction is the entry point the next time the (same) routine
isused.

Level or Edge Triggered

Because internal interrupt requests are levels and interrupt
requests from the outside are (usually) edges, the hardware
for external interrupts uses edge-triggered flip-flops to
convert the edges to levels.

The level-activated system requires that interrupt-serving
software perform some action to remove the interrupting
source. The action involved in serving the interrupt may
remove the source, or the software may have to actually
reset the flip-flops by writing to the corresponding Interrupt
Pending register.

1004

PS024801-1104

STACK OPERATION

The Super8 architecture supports stack operations in the
register file or in data memory. Bit 1 in the external Memory
Timing register (R254 bank 0) selects between the two.

Register pair 216-217 forms the Stack Pointer used for all
stack operations. R216 is the MSB and R217 is the LSB.

The Stack Pointer always points to data stored on the top of
the stack. The address is decremented prior to a PUSH and
incremented after a POP.

The stack is also used as a return stack for CALLs and
interrupts. During a CALL, the contents of the PC are saved
on the stack, to be restored later. Interrupts cause the
contents of the PC and FLAGS to be saved on the stack, for
recovery by IRET when the interrupt is finished.

When the Super8 is configured for an internal stack (using
the register file), R217 contains the Stack Pointer R216 may

be used as a general-purpose register, but its contents will
be changed if an overflow or underflow occurs as the result
of incrementing or decrementing the stack address during
normal stack operations.

User-Defined Stacks

The Super8 provides for user-defined stacks in both the
register file and program or data memory. These can be
made to increment or decrement on a push by the choice of
opcodes. For example, to implement a stack that grows
from low addresses to high addresses in the register file, use
PUSHUI and POPUD. For a stack that grows from high
addresses to low addresses in data memory, use LDE] for
pop and LDEPD for push.

COUNTER/TIMERS

The Super8 hastwo identical independently programmable
16-bit counter/timers that can be cascaded to produce a
single 32-bit counter. They can be used to count external
events, or they can obtain their input internally. The internal
inputis obtained by dividing the crystal frequency by four.

The counterftimers can be set to count up or down, by
software or external events. They can be set for single or
continuous cycle counting, and they can be set with a
bi-value option, where two preset time constants alternate in
loading the counter each time it reaches zero. This can be
used to produce an output pulse train with a variable duty
cycle.

The counterftimers can alsa be programmed to capture the
count value at an external event or generate an interrupt
whenever the count reaches zero. They can be turned on
and off in response to external events by using a gate and/or
a trigger option. The gate option enables counts only when
the gate line is Low; the trigger option turns on the counter
after a transient High. The gate and trigger options used
together cause the counter/timer to work in gate mode after
initially being triggered.

The control and status register bits for the counter/timers are
shown in Figure 5.

DMA

The Super8 features an on-chip Direct Memory Access
(DMA) channel to provide high bandwidth data
transmission capabilities. The DMA channel can be used by
the UART receiver, UART transmitter, or handshake channel
0. Data can be transferred between the peripheral and
contiguous locations in either the register file or external

data memory. A 16-bit count register determines the
number of transactions to be performed; an interrupt can be
generated when the countis exhausted. DMA transfers to or
from the register file require six CPU clock cycles; DMA
transfers to or from external memory take ten CPU clock
cycles, excluding wait states.

PS024801-1104

1005

ABSOLUTE MAXIMUM RATINGS

Voltage on all pins with respect

toground -03Vio +7.0V
Ambient Operating

Temperature See Ordering Information
Storage Temperature -65°Cto + 150°C

Stresses greater than these may cause permanent damage to the device.
This is a stress rating only; operation of the device under conditions more
severe than those listed for operating conditions may cause permanent
damage to the device. Exposure to absolute maximum ratings for
extended periods may also cause permanent damage.

STANDARD TEST CONDITIONS

Figure 14 shows the setup for standard test conditions. Al
voltages are referenced to ground, and positive current
fiows into the reference pin.

Standard conditions are:

B +4.75V< Voo < +525V
m GND = OV

B 0°C<Tp< +70°C

FROM OUTPUT
UNDER TEST

400

150p:,J: Wy

TEST LOAD (FOR ALL PINS)

Standard Test Load

DC CHARACTERISTICS
Symbol Parameter Min Max Unit Condition
VeH Clock Input High Voltage 3.8 Vee \ Driven by External Clock Generator
VoL Clock Input Low Voltage -03 0.8 % Driven by External Clock Generator
Vi Input High Voltage 2.2 Ve \Y
VL Input Low Voltage -03 0.8 v
VRH Reset Input High Voltage 3.8 Vee \
= Reset Input Low Voltage -0.3 0.8)
VoH Output High Voltage 2.4 vV loq = —400pA
VoL Output Low Voltage 0.4 \ loL = +4.0mA
i Input Leakage =10 10 uA
loL Output Leakage - 10 10 uA
IR Reset input Current -50 uA
lcc Ve Supply Current 320 mA
1006

PS024801-1104

INPUT HANDSHAKE TIMING

DATA IN

ommam X X

X
RO o
4—@————»
RDY OUT ﬁﬁc 7

Fully Interlocked Mode Strobed Mode

AC CHARACTERISTICS (20 MHz)
Input Handshake

DAV IN

i

Number Symbol Parameter Min Max Notes*t
1 TsDI(DAV) Data In to Setup Time 0
2 TdDAVI(RDY) DAV ! Input to RDY § Delay . 200 1
3 ThDYRDY) Data In Hold Time from RDY 4 0
4 TwDAV DAV In Width 45
5 ThDI(DAV) Data In Hold Time from DAV 130
6 TdDAV(RDY) DAV t Input to RDY 1 Delay 100 2
7 TdRDY{(DAV) RDY ¢ Output to DAV 1 Delay 0
NOTES:

1. Standard Test Load

2. This time assumes user program reads data before DAV Input goes high. RDY will not go high before data is read.
fTimes given are in ns.

*Times are prefiminary and subject to change.

PS024801-1104 1007

OUTPUT HANDSHAKE TIMING

DATA OUT % DAYA OUT

— | O— & ® ®

Yy

BAY ouT N 7 owour N /T
2 _>®<_
RDY IN __/ (3 JK ,/_

Fully Interlocked Mode Strobed Mode

AC CHARACTERISTICS (12 MHz, 20 MHz)
Output Handshake

Number Symbol Parameter Min Max Notes*t

1 TdDO(DAV) Data Out to DAV ¢ Delay 90 1.2

2 TdRDYr(DAV) ROY * Input to DAV ¢ Delay 0 110 1

3 TADAVORDY) DAV | Qutput to RDY ¢ Delay 0

4 TAROYH(DAY) ROY ¢ Inputto DAV t Delay 0 110 1

5 TdDAVOr{RDY) DAV t Output to RDY 1 Delay

6 TwDAVO DAV Output Width 150 2
NOTES:

1. Standard Test Load

2. Time givenis for zero value in Deskew Counter. For nonzero value of nwheren = 1,2,.. . 15add 2 x n x TpC tothe given time.
1Times given arein ns.

*Times are prefiminary and subject to change.

AC CHARACTERISTICS (12MH?2)

Read/Write
Normal Timing Extended Timing
Number Symbol Parameter Min Max Min Max Notest*
1 TdA(AS) Address Valid to AS t Delay 35 115
2 TAAS(A) AS t to Address Float Delay 65 150
3 TdAS(DR) AS 1 to Read Data Required Valid 270 600 1
4 TwAS AS Low Width 65 150
5 TdA(DS) Address Float to DS 20 20
6a TwDS(Read) DS (Read) Low Width 225 470 1
6b TwDS(Write) DS (Write) Low Width 130 295 1
TdDS(DR) DS ! to Read Data Required Valid 180 420 1
ThDS(DR) Read Data to DS t Hold Time 0 0
TdDS(A) DS * to Address Active Delay 50 135
10 TdDS(AS) DS t 10 AS | Delay 60 145
11 TdDO(DS) Write Data Valid to DS (Write) $ Delay 35 15
12 TdAS(W) AS 1 to Wait Delay 220 600 2
13 ThDS(W) DS * to Wait Hold Time 0 0
14 TdRW(AS) R/W Valid to AS * Delay 50 135
NOTES:

1. WAIT states add 167 ns to these times.

2. Auto-wait states add 167 ns to this time.

T All times are in ns and are for 12 MHz input frequency.
* Timings are preliminary and subject to change.

1008 PS024801-1104

AC CHARACTERISTICS (20 MHz2)

Read/Write
Normal Timing Extended Timing
Number Symbol Parameter Min Max Min Max Notest*
1 TdA(AS) Address Valid to AS t Delay 10 50
2 TdAS(A) AS tto Address Float Delay 35 85
3 TdAS(DR) AS t to Read Data Required Valid 140 335 1
4 TWAS AS Low Width 35 85
5 TdA(DS) Address Float to DS 4 0 0
6a TwDS(Read) DS (Read) Low Width 125 275 1
6b TWDS(Write) DS (Write) Low Width 65 165 1
7 TdDS(DR) DS ¢ to Read Data Required Valid 80 225 1
8 ThDS(DR) Read Data to DS 1 Hold Time 0 0
] TdDS(A) DS t to Address Active Delay 20 70
10 TdDS(AS) DSt toAS ¢+ Delay 30 80
n TdDO(DS) Write Data Valid to DS (Write) + Delay 10 50
12 TAAS(W) AS t to Wait Delay 90 335 2
13 ThDS(W) DS t to Wait Hold Time 0 0
14 TARW(AS) R/W Valid to AS t Delay 20 70
15 TdDS(DW) DSt to Write Data Not Valid Delay 20 70
NOTES:
1. WAIT states add 100 ns to these times.
2. Auto-wait states add 100 ns to this time.
1 Alitimes are in ns and are for 20 MHz input frequency.
* Timings are preliminary and subject to change.
w__ X X
() —
Po";_:; W Ag-Ays. DM x
| —O— B —
PORT 1 X Ag-Ar BL 007 OUT Do'D; N > our
—(D—] () (G—— 10
AS S / @
— O e o]
<—®—-—>
— o
Ds N \s
@D
Uh 1
WAIT)‘ WAIT WINDOW
(@)

External Memory Read and Write Timing

—

PS024801-1104

1009

ADDRESS OUT X Ap-Ata

®

DATAIN X Do-D7IN X

EPROM Read Timing

AC CHARACTERISTICS (20 MHz)

EPROM Read Cycle
Number Symbol Parameter Min Max Notest*
1 TdA(DR) Address Valid to Read Data Required
Valid 170 1
NOTES:

1. WAIT states add 167 ns to these times.
fAlltimes are in ns and are for 12 MHz input frequency.
*Timings are preliminary and subject to change.

1010

PS024801-1104

