National Semiconductor

Semiconductors

Linear I.C.'s - Operational Amplifiers

LM118 Series Operational Amplifiers

REFERENCE TABLE

Type	Stock No.			
LM118H	31049H			
LM218H	31050X			
LM318H	29588A			
LM318D	31066F			
LM318N	34463 R			
LINGIBIN	34463 FC			

GENERAL DESCRIPTION

The LM118, LM218 and LM318 are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature internal frequency compensation and a factor of ten increase in speed over general purpose devices.

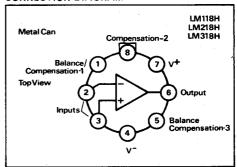
FEATURES

15MHz small signal bandwidth.

Guaranteed 50V/µs slew rate.

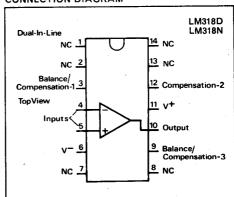
Operates from supplies of ± 5 to ± 18 V.

Internal frequency compensation.


Input and output overload protected.

Pin compatible with general purpose op amps. Although no external frequency compensation components are needed for operation, feedforward compensation may be used to further increase the speed. For inverting applications, feedforward compensation will boost the slew rate to over 100V/µs and almost double the bandwidth. However, for non-inverting or differential application feedforward cannot be used. The high speed and fast settling time of these op amps. make them useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.

ABSOLUTE MAXIMUM RATINGS


Supply voltage	±18V		
Power dissipation (Note 1)	500mW ±10mA		
Differential input current (Note 2)			
Input voltage (Note 3)	±15V		
Output short-circuit duration	Indefinite		
Operating temperature range LM118 LM218 LM318	-55°C to 125°C -25°C to 85°C 0°C to 70°C		
Storage temperature range	-65°C to 150°C		
Lead temperature (soldering, 10 sec)	300°C		

CONNECTION DIAGRAM

See outline drawing No. 97 for dimensions.

CONNECTION DIAGRAM

See outline drawing No. 110 for dimensions.

Continued on next page

National Semiconductor

Semiconductors

Integrated Circuits - Interface Circuits

ELECTRICAL CHARACTERISTICS (Note 4)

Parameter	Conditions	LM118	LM218	LM318	Units	
Input Offset Voltage	T _A =25°C	4	4	10	mV	Max
Input Offset Current	T _A =25°C	50	50	200	nA	Max
Input Bias Current	T _A =25°C	250	250	600	nΑ	Max
Input Resistance	T _A =25°C	1	1	0.5	МΩ	Min
Supply Current	T _A =25°C	8	8	10	mA	Max
Large Signal Voltage Gain	T _A =25°C, V _S =±15V V _{OUT} =±10V, R _L ≥2k	50	50	25	V/mV	Min
Input Offset Voltage		6	6	15	mV	Max
Small Signal Bandwidth	T _A =25°C, V _S =±15V	15	15	15	MHz	Тур
Slew Rate	T_A = 25°C, V_S = \pm 15V, A_V = 1, R_S = 10k Ω	50	50	50	V/μs	Min
Input Offset Current		100	100	300	nΑ	Max
Input Bias Current		500	500	1000	nΑ	Max
Supply Current	T _A =T _{Max}	7	7	10	mA	Max
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L \ge 2k$	25	25	20	V/mV	Min
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 2 k\Omega$	±12	± 12	± 12	٧	Min
Input Voltage Range	V _S =±15V	±11.5	±11.5	±11.5	٧	Min
Common Mode Rejection Ratio		80	80	70	d₿	Min
Supply Voltage Rejection Ratio		70	70	65	dB	Min

Note 1: The maximum junction temperature of the LM118 is 150°C, of the LM218 is 100°C, and of the LM318 is 85°C. For operating at elevated temperatures, devices in the TO-99 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than $\pm 15 V$, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5 \leqslant V_S \leqslant \pm 18V$ and $-55^{\circ}C \leqslant T_A \leqslant 125^{\circ}C$, for the LM118, $-25^{\circ}C \leqslant T_A \leqslant 85^{\circ}C$ for the LM218, and $0^{\circ}C \leqslant T_A \leqslant 70^{\circ}C$ for the LM318; unless otherwise specified. Also power supplies must be bypassed with $0.1\mu F$ disc capacitors.