N-CHANNEL GaAs MES FET **NE650R479A**

0.4 W L, S-BAND POWER GaAs MES FET

DESCRIPTION

NEC

The NE650R479A is a 0.4 W GaAs MES FET designed for middle power transmitter applications for mobile communication handset and base station systems. It is capable of delivering 0.4 watt of output power (CW) with high linear gain, high efficiency, excellent distortion and is suitable as a driver amplifier for our NE6500379A etc.

Reliability and performance uniformity are assured by NEC's stringent quality and control procedures.

FEATURES

- High Output Power : Po (1 dB) = +26 dBm typ.
- High Linear Gain : 14 dB typ.
- High Power Added Efficiency: 45% typ. @Vos = 6 V, Ioset = 100 mA, f = 1.9 GHz

ORDERING INFORMATION (PLAN)

Part Number	Package	Supplying Form
NE650R479A-T1	79A	12 mm tape width, 1 kpcs/reel

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: NE650R479A)

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Operation in excess of any one of these parameters may result in permanent damage.

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	VDS	15	V
Gate to Source Voltage	Vgso	-7	V
Drain Current	lo	0.6	А
Gate Forward Current	Igf	12	mA
Gate Reverse Current	I GR	12	mA
Total Power Dissipation	Р⊤	2.5	W
Channel Temperature	Tch	150	°C
Storage Temperature	Tstg	–65 to +150	°C

Caution Please handle this device at static-free workstation, because this is an electrostatic sensitive device.

The information in this document is subject to change without notice.

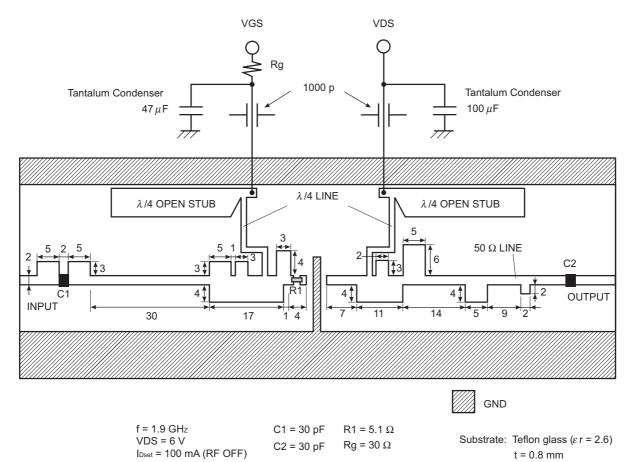
RECOMMENDED OPERATION LIMITS

Characteristics	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	VDS			6.0	6.0	V
Gain Compression	Gcomp				3.0	dB
Channel Temperature	Tch				+125	°C

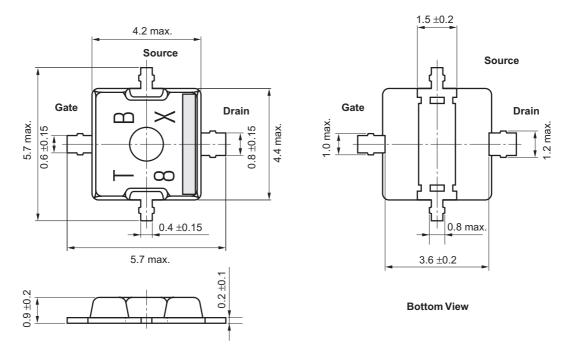
ELECTRICAL CHARACTERISTICS

(T_A = 25°C, Unless otherwise specified, using NEC standard test fixture.)

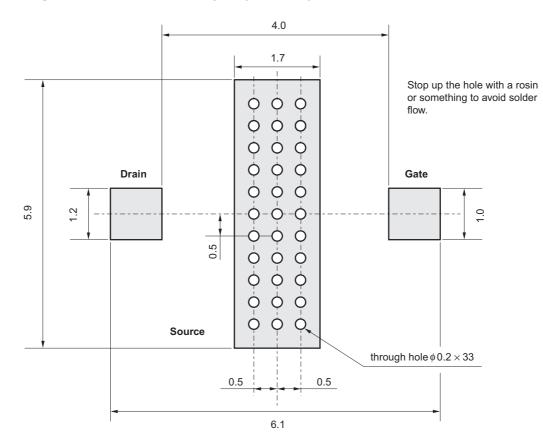
Characteristics	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Saturated Drain Current	loss	V _{DS} = 2.5 V, V _{GS} = 0 V		0.35		А
Pinch-off Voltage	Vp	V _{DS} = 2.5 V, I _D = 2 mA	-2.5		-0.5	V
Gate to Drain Break Down Voltage	BV_{gd}	I _{gd} = 2 mA	13			V
Thermal Resistance	Rth	Channel to Case		30	50	°C/W
Output Power at 1 dB Gain Compression Point	Po (1 dB)	f = 1.9 GHz, V _{DS} = 6.0 V Rg = 30 Ω		26.0		dBm
Drain Current	lo	I _{Dset} = 100 mA (RF OFF) Note 2		140		mA
Power Added Efficiency	η_{add}	Note 2		45		%
Linear Gain ^{Note 1}	G∟		13.0	14.0		dB


Notes 1. Pin = 0 dBm

 DC performance is 100% testing. RF performance is testing several samples per wafer. Wafer rejection criteria for standard devices is 1 reject for several samples.


NE650R479A S-PARAMETERS TEST CONDITIONS: VDs = 6.0 V, IDset = 100 mA (Preliminary Data)

		S11		S 21		S 12		S 22
freq. (MHz)	MAG.	ANG. (deg.)						
1400	0.050	400.0	F 000	400.0	0.000	40.0	0.000	400 F
1400	0.850	-129.3	5.286	120.2	0.062	42.6	0.293	-132.5
1500	0.849	-134.0	5.066	119.1	0.063	41.6	0.294	-136.0
1600	0.840	-137.0	4.837	118.4	0.063	41.5	0.294	-138.1
1700	0.837	-141.4	4.634	116.8	0.065	41.5	0.299	-140.6
1800	0.833	-145.9	4.519	115.0	0.067	40.9	0.298	-143.4
1900	0.826	-150.0	4.404	114.3	0.068	39.4	0.296	-146.1
2000	0.817	-153.3	4.159	112.7	0.068	37.8	0.299	-149.2
2100	0.817	-157.9	4.073	111.3	0.067	37.4	0.296	-152.8
2200	0.808	-161.5	3.926	109.9	0.066	37.9	0.294	-155.6
2300	0.810	-167.1	3.795	108.1	0.066	38.8	0.290	-160.2
2400	0.810	-171.9	3.687	105.3	0.067	39.1	0.289	-164.1
2500	0.805	-176.6	3.545	104.0	0.069	38.3	0.286	-168.7
2600	0.806	179.1	3.306	102.6	0.069	36.5	0.285	-171.9
2700	0.806	175.8	3.216	102.0	0.067	35.7	0.285	-175.5
2800	0.809	172.0	3.129	101.9	0.066	35.8	0.286	-179.3
2900	0.816	167.8	3.023	101.4	0.065	36.3	0.291	176.6
3000	0.817	164.2	2.956	101.3	0.063	35.9	0.298	172.4


APPLICATION CIRCUIT EXAMPLE (Unit: mm)

79A Package Dimensions (Unit: mm)

79A Package Recommended P.C.B. Layout (Unit: mm)

Preliminary Data Sheet

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 2, Exposure limit ^{Note} : None	IR35-00-2
Partial Heating	Pin temperature: 260°C Time: 5 seconds or less (per pin row) Exposure limit ^{™ete} : None	-

Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).