N-Channel JFETs

2N4117A PN4117A SST4117
2N4118A PN4118A SST4118
2N4119A PN4119A SST4119

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Part Number</th>
<th>V_{GS(off)} (V)</th>
<th>V_{(BR)GSS} Min (V)</th>
<th>g_{fs} Min (\mu S)</th>
<th>I_{DSS} Min (\mu A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4117</td>
<td>-0.6 to -1.8</td>
<td>-40</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4118</td>
<td>-1 to -3</td>
<td>-40</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>4119</td>
<td>-2 to -6</td>
<td>-40</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

FEATURES

- Ultra-Low Leakage: 0.2 pA
- Very Low Current/Voltage Operation
- Ultrahigh Input Impedance
- Low Noise

DESCRIPTION

The 2N/PN/SST4117A series of n-channel JFETs provide ultra-high input impedance. These devices are specified with a 1-pA limit and typically operate at 0.2 pA. This makes them perfect choices for use as high-impedance sensitive front-end amplifiers.

The hermetically sealed TO-206AF package allows full military processing per MIL-S-19500 (see Military Information). The TO-226A (TO-92) plastic package provides a low-cost option. The TO-236 (SOT-23) package provides surface-mount capability. Both the PN and SST series are available in tape-and-reel for automated assembly (see Packaging Information).

For applications information see AN105.
2N/PN/SST4117A Series

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Typa</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-Source/Gate-Drain Voltage</td>
<td>V(BR)GSS</td>
<td>I_G = -1 (\mu)A, V_DS = 0 V</td>
<td></td>
<td>-70</td>
<td>-40</td>
<td>-40</td>
<td>-40</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Forward Gate Current</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature : (2N Prefix)</td>
<td></td>
<td>-65 to 175°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PN, SST Prefix)</td>
<td></td>
<td>-55 to 150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature : (2N Prefix)</td>
<td></td>
<td>-55 to 175°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PN, SST Prefix)</td>
<td></td>
<td>-55 to 150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature ((^1/16) from case for 10 sec.)</td>
<td></td>
<td>300°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (case 25°C)</td>
<td></td>
<td>300 mW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes a. Derate 2 mW/°C above 25°C</td>
<td></td>
</tr>
<tr>
<td>Notes b. Derate 2.8 mW/°C above 25°C</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATIONS (\(T_A = 25°C \) UNLESS OTHERWISE NOTED)

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Typa</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-Source Breakdown Voltage</td>
<td>V(BR)GSS</td>
<td>I_G = -1 (\mu)A, V_DS = 0 V</td>
<td></td>
<td>-70</td>
<td>-40</td>
<td>-40</td>
<td>-40</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Gate-Source Cutoff Voltage</td>
<td>V_GS(off)</td>
<td>V_DS = 10 V, I_G = 1 nA</td>
<td></td>
<td>-0.6</td>
<td>-1.8</td>
<td>-1</td>
<td>-2</td>
<td>-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation Drain Current</td>
<td>I_DSS</td>
<td>V_DS = 10 V, V_GS = 0 V</td>
<td></td>
<td>30</td>
<td>90</td>
<td>80</td>
<td>240</td>
<td>200</td>
<td>600</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>Gate Reverse Current</td>
<td>I_GSS</td>
<td>V_GS = -20 V, V_DS = 0 V</td>
<td></td>
<td>-0.2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>Gate Reverse Current</td>
<td>I_GSS</td>
<td>V_GS = -20 V, V_DS = 0 V, TA = 150°C</td>
<td></td>
<td>-0.4</td>
<td>-2.5</td>
<td>-2.5</td>
<td>-2.5</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Gate Reverse Current</td>
<td>I_GSS</td>
<td>V_GS = -10 V, V_DS = 0 V, PN</td>
<td></td>
<td>-0.2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>Gate Reverse Current</td>
<td>I_GSS</td>
<td>V_GS = -10 V, V_DS = 0 V, SST</td>
<td></td>
<td>-0.2</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Reverse Current</td>
<td>I_GSS</td>
<td>V_GS = -10 V, V_DS = 0 V, PN/SST</td>
<td></td>
<td>-0.03</td>
<td>-2.5</td>
<td>-2.5</td>
<td>-2.5</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Gate Operating Currentb</td>
<td>I_G</td>
<td>V_DG = 15 V, I_G = 30 (\mu)A</td>
<td></td>
<td>-0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>Drain Cutoff Currentb</td>
<td>I_D(off)</td>
<td>V_DS = 10 V, V_GS = -8 V</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Source Forward Voltageb</td>
<td>V_GS(F)</td>
<td>I_G = 1 mA, V_DS = 0 V</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common-Source Forward Transconductance</td>
<td>gfs</td>
<td>V_DS = 10 V, V_GS = 0 V, f = 1 kHz</td>
<td>(\mu)S</td>
</tr>
<tr>
<td>Common-Source Output Conductance</td>
<td>gos</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Common-Source Input Capacitance</td>
<td>ciss</td>
<td>V_DS = 10 V, V_GS = 0 V, f = 1 MHz</td>
<td>(pF)</td>
</tr>
<tr>
<td>Common-Source Reverse Transfer Capacitance</td>
<td>crss</td>
<td>V_DS = 10 V, V_GS = 0 V, f = 1 kHz</td>
<td>(pF)</td>
</tr>
<tr>
<td>Equivalent Input Noise Voltageb</td>
<td>(\xi_n)</td>
<td>V_DS = 10 V, V_GS = 0 V, f = 1 kHz</td>
<td>(nV/\sqrt{Hz})</td>
</tr>
</tbody>
</table>

Notes
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
b. This parameter not registered with JEDEC.

www.vishay.com

Document Number: 70239
TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

- **Gate Leakage Current**
 - $I_{GSS} @ V_{DS} = 10\,\text{V}, V_{GS} = 0\,\text{V}$
 - $I_{GSS} @ V_{DS} = 10\,\text{V}, V_{GS} = 0\,\text{V}$
 - $I_{GSS} @ V_{DS} = 125\,\text{V}, V_{GS} = 0\,\text{V}$

- **Drain Current and Transconductance vs. Gate-Source Cutoff Voltage**
 - $I_{DSS} @ V_{DS} = 10\,\text{V}, V_{GS} = 0\,\text{V}$
 - $g_{ss} @ V_{DS} = 10\,\text{V}, V_{GS} = 0\,\text{V}$
 - $f = 1\,\text{kHz}$

- **On-Resistance and Output Conductance vs. Gate-Source Cutoff Voltage**
 - $r_{DS(on)} @ I_D = 10\,\text{mA}, V_{GS} = 0\,\text{V}$
 - $g_{os} @ V_{DS} = 10\,\text{V}, V_{GS} = 0\,\text{V}$
 - $f = 1\,\text{kHz}$

- **Common-Source Forward Transconductance vs. Drain Current**
 - $g_{fs} @ V_{DS} = 10\,\text{V}, V_{GS} = 0\,\text{V}$
 - $T_A = 125\,\text{°C}$
 - $V_{DS} = 10\,\text{V}$
 - $f = 1\,\text{kHz}$

- **Output Characteristics**
 - $V_{GS} = 0\,\text{V}$
 - $V_{GS} = -0.7\,\text{V}$
 - $V_{GS} = -1.0\,\text{V}$
 - $V_{GS} = -1.5\,\text{V}$
 - $V_{GS} = -2.0\,\text{V}$

- **Output Characteristics**
 - $V_{GS} = 0\,\text{V}$
 - $V_{GS} = -0.5\,\text{V}$
 - $V_{GS} = -1.0\,\text{V}$
 - $V_{GS} = -1.5\,\text{V}$
 - $V_{GS} = -2.0\,\text{V}$
TYPICAL CHARACTERISTICS \((T_A = 25^\circ C\) UNLESS OTHERWISE NOTED\)

Transfer Characteristics

- **Transconductance vs. Gate-Source Voltage**
 - \(V_{GS} = -0.7 \text{ V}\)
 - \(V_{DS} = 10 \text{ V}\)
 - \(T_A = 125^\circ C\)
 - \(25^\circ C\)
 - \(-55^\circ C\)

- **Transconductance vs. Gate-Source Voltage**
 - \(V_{GS} = -2.5 \text{ V}\)
 - \(V_{DS} = 10 \text{ V}\)
 - \(T_A = -55^\circ C\)
 - \(25^\circ C\)
 - \(125^\circ C\)

Common-Source Input Capacitance

- **Circuit Voltage Gain vs. Drain Current**
 - \(A_V = \frac{g_{fs} R_L}{1 + R_L R_{GS}}\)
 - Assume \(V_{DD} = 15 \text{ V}, V_{DS} = 5 \text{ V}\)
 - \(R_L = 10 \text{ V}\)
 - \(V_{GS} = -0.7 \text{ V}\)
 - \(-2.5 \text{ V}\)

- **Common-Source Input Capacitance vs. Gate-Source Voltage**
 - \(f = 1 \text{ MHz}\)
 - \(V_{GS} = 0 \text{ V}\)
 - \(10 \text{ V}\)
TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

- Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage
 - C_{rss} vs. V_{GS} graph
 - $f = 1$ MHz
 - $V_{DS} = 0$ V, 10 V

- Equivalent Input Noise Voltage vs. Frequency
 - $f = 1$ MHz
 - $V_{DS} = 0$ V, 10 V
 - Incremental f values

- Output Conductance vs. Drain Current
 - g_{os} vs. I_D graph
 - $V_{GS(off)} = -2.5$ V
 - $T_A = -55^\circ C$, 25$^\circ C$, 125$^\circ C$
 - $V_{DS} = 10$ V
 - $f = 1$ kHz

- On-Resistance vs. Drain Current
 - $r_{DS(on)}$ vs. I_D graph
 - $V_{GS(off)} = -0.7$ V
 - -2.5 V
 - $T_A = 25^\circ C$
Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.