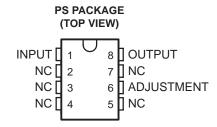
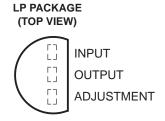
SLVS004G - APRIL 1979 - REVISED SEPTEMBER 2009

- Output Voltage Range Adjustable From 1.2 V to 32 V When Used With an External Resistor Divider
- Output Current Capability of 100 mA
- Input Regulation Typically 0.01% Per Input-Voltage Change
- Output Regulation Typically 0.5%
- Ripple Rejection Typically 80 dB


description/ordering information

The TL317 is an adjustable three-terminal positive-voltage regulator capable of supplying 100 mA over an output-voltage range of 1.2 V to 32 V. It is exceptionally easy to use and requires only two external resistors to set the output voltage.

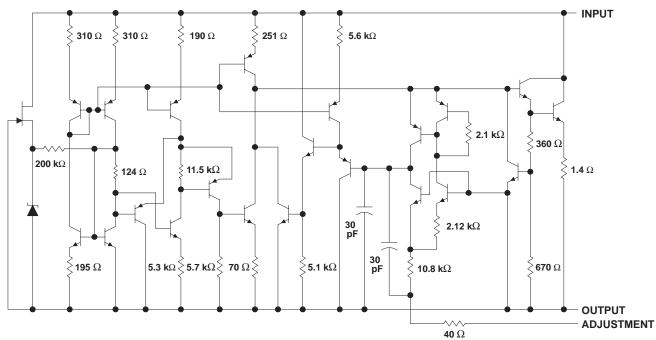

In addition to higher performance than fixed regulators, this regulator offers full overload protection available only in integrated circuits. Included on the chip are current-limiting and thermal-overload protection. overload-protection circuitry remains fully functional, even when ADJUSTMENT disconnected. Normally, no capacitors are needed unless the device is situated far from the input filter capacitors, in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. ADJUSTMENT can be bypassed to achieve very high ripple rejection, which is difficult to achieve with standard three-terminal regulators.

D OR PW PACKAGE (TOP VIEW) INPUT [1 8] NC OUTPUT [2 7] OUTPUT OUTPUT [3 6] OUTPUT ADJUSTMENT [4 5] NC

NC – No internal connection
OUTPUT terminals are all internally connected.

NC - No internal connection

In addition to replacing fixed regulators, the TL317 regulator is useful in a wide variety of other applications. Since the regulator is floating and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded. Its primary application is that of a programmable output regulator, but by connecting a fixed resistor between ADJUSTMENT and OUTPUT, this device can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping ADJUSTMENT to ground, programming the output to 1.2 V, where most loads draw little current.


The TL317C is characterized for operation over the virtual-junction temperature range of 0°C to 125°C. The TL317 is characterized for operation over the virtual-junction temperature range of –20°C to 125°C.

ORDERING INFORMATION

TJ	PACKAG	ΕŤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	COIC (D)	Tube of 75	TL317CD	TI 2470
0°C to 125°C	SOIC (D)	Reel of 2500	TL317CDR	TL317C
	TO 2000 / TO 200 // D)	Bulk of 1000	TL317CLP	TL317C
	TO-226 / TO-92 (LP)	Reel of 2000	TL317CLPR	1L317C
	TSSOP (PW)	Tube of 150	TL317CPW	T317
	1330F (FW)	Reel of 2000	TL317CPWR	1317
	TO-226 / TO-92 (LP)	Bulk of 1000	TL317LP	TL317
–20°C to 125°C	SOP (PS)	Tube of 80	TL317PS	T317
	30P (P3)	Reel of 2000	TL317PSR	1317

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

schematic

NOTE A: All component values shown are nominal.

absolute maximum ratings over operating temperature range (unless otherwise noted)†

Input-to-output differential voltage, V _I – V _O		35 V
Package thermal impedance, θ_{JA} (see Notes 1 and 2):		
	LP package	140°C/W
	PS package	95°C/W
	PW package	149°C/W
Operating virtual junction temperature, T _J		150°C
Storage temperature range, T _{stg}		65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

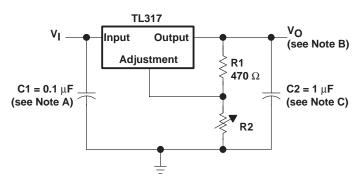
recommended operating conditions

			MIN	MAX	UNIT
VI – VO	Input-to-output voltage differential			35	V
IO	Output current		2.5	100	mA
т.	Operating virtual-junction temperature	TL317C	0	125	°C
IJ	Operating virtual-junction temperature	TL317	-20	125	°C

NOTES: 1. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

SLVS004G - APRIL 1979 - REVISED SEPTEMBER 2009


electrical characteristics over recommended operating virtual-junction temperature range (unless otherwise noted)

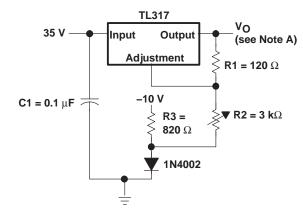
			TL317C			T	
PARAMETER	TEST CON	MIN	TYP	MAX	UNIT		
land valence regulation (see Nate 2)	V. V. 5.V. 25.V	T _J = 25°C		0.01	0.02	%V	
Input voltage regulation (see Note 3)	$V_I - V_O = 5 \text{ V to } 35 \text{ V}$	$I_O = 2.5 \text{ mA to } 100 \text{ mA}$		0.02	0.05	%V	
	$V_0 = 10 V$,	f = 120 Hz		65			
Ripple regulation	V _O = 10 V, 10-μF capacitor between ADJUSTMENT and ground			80		dB	
	$V_1 = 5 \text{ V to } 35 \text{ V},$	$V_O \le 5 V$		25		mV	
Output voltage regulation	$I_O = 2.5 \text{ mA to } 100 \text{ mA},$ $T_J = 25^{\circ}\text{C}$	$V_O \ge 5 V$		5		mV/V	
	$V_1 = 5 \text{ V to } 35 \text{ V},$	$V_0 \le 5 V$		50		mV	
	$I_0 = 2.5 \text{ mA to } 100 \text{ mA}$	$V_O \ge 5 V$		10		mV/V	
Output voltage change with temperature	$T_J = 0$ °C to 125°C			10		mV/V	
Output voltage long-term drift	After 1000 hours at $T_J = 125^{\circ}C$ and $V_I - V_O = 35 \text{ V}$			3	10	mV/V	
Output noise voltage	f = 10 Hz to 10 kHz,	T _J = 25°C		30		μV/V	
Minimum output current to maintain regulation	$V_{I} - V_{O} = 35 \text{ V}$			1.5	2.5	mA	
Peak output current	$V_I - V_O \le 35 \text{ V}$		100	200		mA	
ADJUSTMENT current				50	100	μΑ	
Change in ADJUSTMENT current	$V_I - V_O = 2.5 \text{ V to } 35 \text{ V},$	$I_O = 2.5 \text{ mA to } 100 \text{ mA}$		0.2	5	μΑ	
Reference voltage (output to ADJUSTMENT)	$V_I - V_O = 5 \text{ V to } 35 \text{ V},$ P \le rated dissipation	$I_O = 2.5 \text{ mA to } 100 \text{ mA},$	1.2	1.25	1.3	V	

[†] Unless otherwise noted, these specifications apply for the following test conditions: $V_I - V_O = 5$ V and $I_O = 40$ mA. Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible. All characteristics are measured with a 0.1- μ F capacitor across the input and a 1- μ F capacitor across the output.

NOTE 3: Input voltage regulation is expressed here as the percentage change in output voltage per 1-V change at the input.

APPLICATION INFORMATION

NOTES: A. Use of an input bypass capacitor is recommended if regulator is far from the filter capacitors.

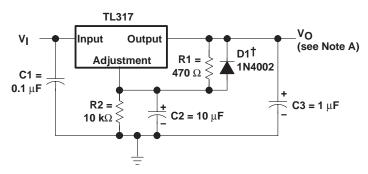

B. Output voltage is calculated from the equation:

$$V_O = V_{ref} \left(1 + \frac{R2}{R1} \right)$$

where: V_{ref} equals the difference between OUTPUT and ADJUSTMENT voltages (\approx 1.25 V).

 Use of an output capacitor improves transient response, but is optional.

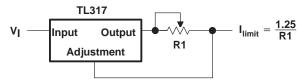
Figure 1. Adjustable Voltage Regulator



NOTE A: Output voltage is calculated from the equation:

$$V_{O} = V_{ref} \left(1 + \frac{R2 + R3}{R1} \right) - 10 \text{ V}$$

where: V_{ref} equals the difference between OUTPUT and ADJUSTMENT voltages (\approx 1.25 V).


Figure 2. 0-V to 30-V Regulator Circuit

[†]D1 discharges C2 if output is shorted to ground.

NOTE A: Use of an output capacitor improves transient response, but is optional.

Figure 3. Regulator Circuit With Improved Ripple Rejection

Figure 4. Precision Current-Limiter Circuit

APPLICATION INFORMATION

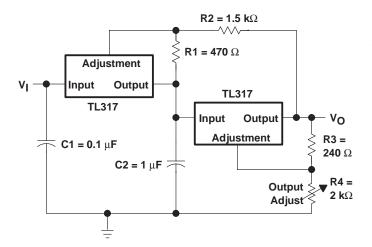


Figure 5. Tracking Preregulator Circuit

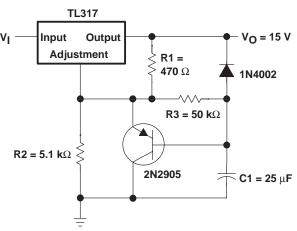


Figure 6. Slow-Turnon 15-V Regulator Circuit

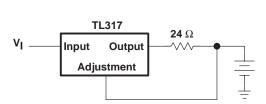


Figure 7. 50-mA Constant-Current Battery-Charger Circuit

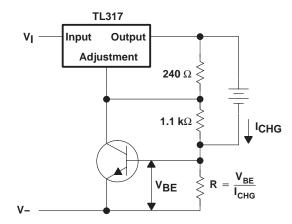
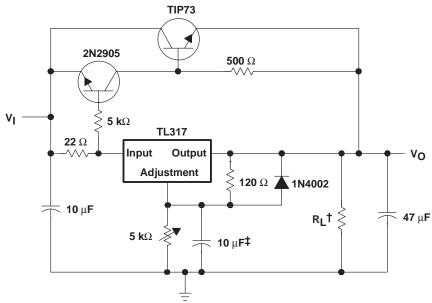



Figure 8. Current-Limited 6-V Charger

APPLICATION INFORMATION

[†] Minimum load current is 30 mA.

Figure 9. High-Current Adjustable Regulator

[‡] Optional capacitor improves ripple rejection.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL317CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL317CLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL317CLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL317CLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL317CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CPWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CPWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317PS	ACTIVE	SO	PS	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317PSE4	ACTIVE	SO	PS	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317PSG4	ACTIVE	SO	PS	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317PSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL317PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

PACKAGE OPTION ADDENDUM

24-Sep-2009

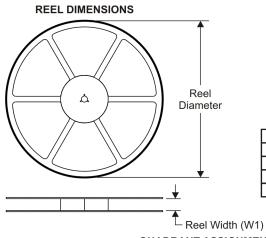
OBSOLETE: TI has discontinued the production of the device.

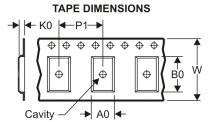
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

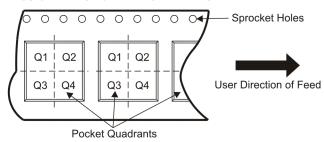
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

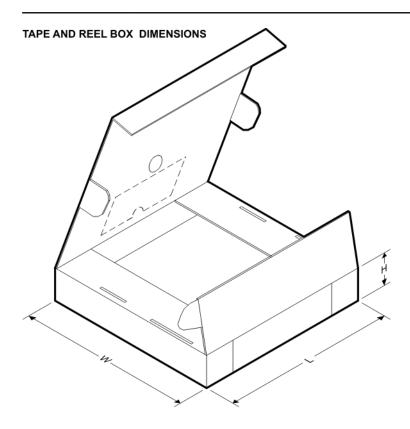

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

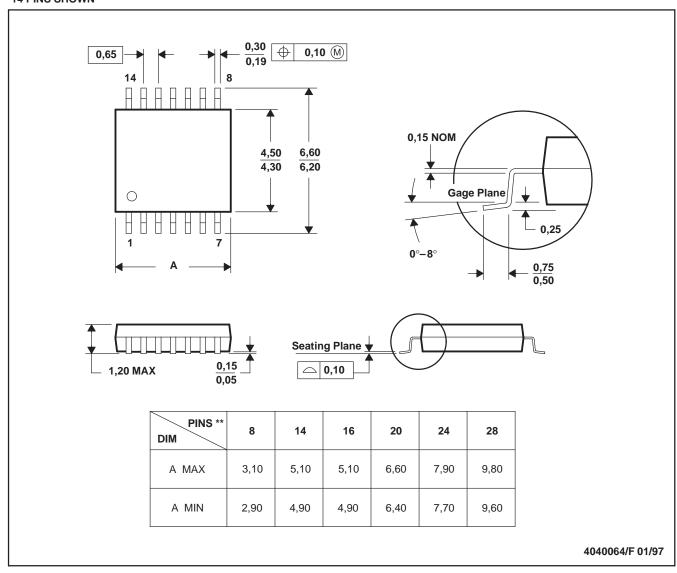

TAPE AND REEL INFORMATION


	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficulties are florifinal	iii dimonoro dio nomina											
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL317CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL317CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TL317PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1

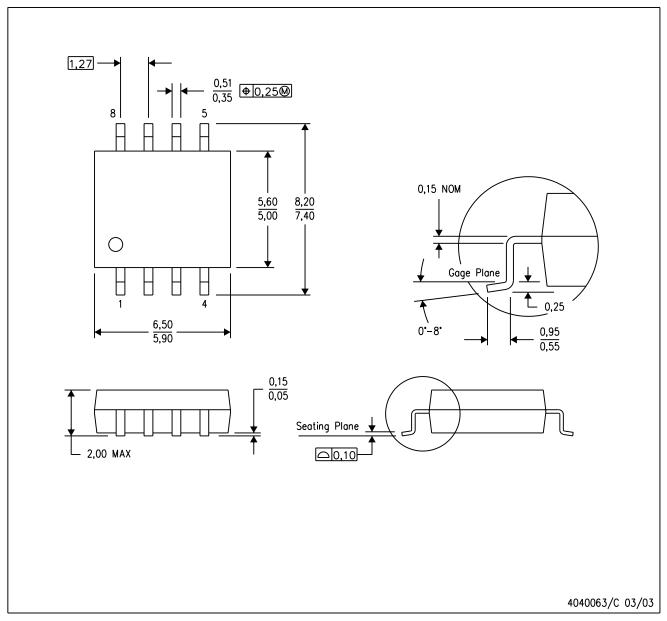

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL317CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL317CPWR	TSSOP	PW	8	2000	346.0	346.0	29.0
TL317PSR	SO	PS	8	2000	346.0	346.0	33.0

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

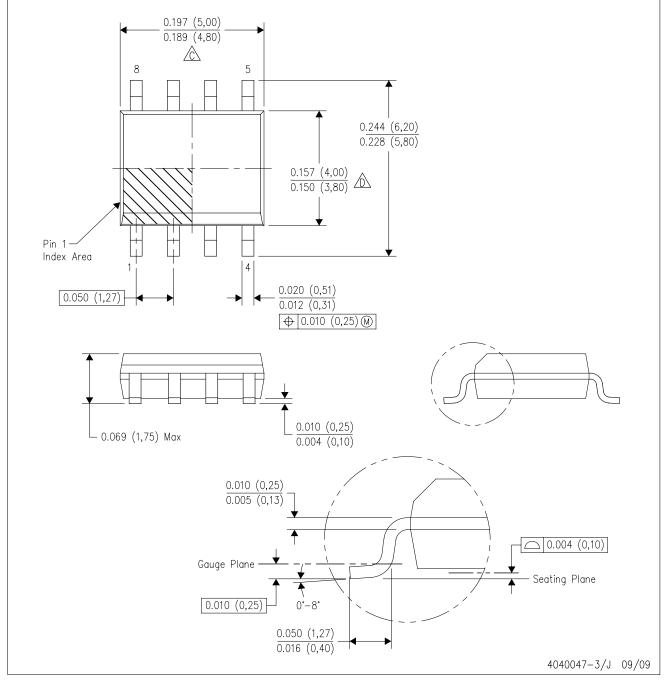


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

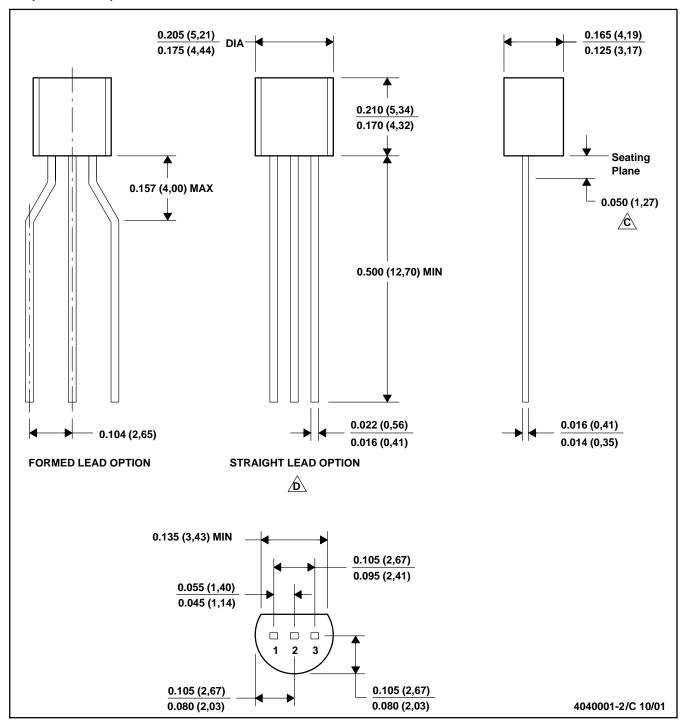


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

LP (O-PBCY-W3)

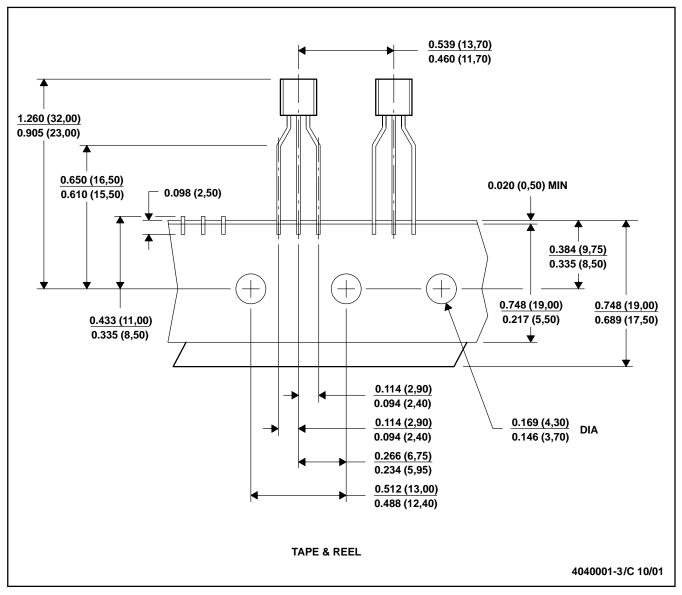
PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice. $\ \ \,$

C.\ Lead dimensions are not controlled within this area

A (TO-226 replaces TO-92)


E. Shipping Method:

Straight lead option available in bulk pack only.

Formed lead option available in tape & reel or ammo pack.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Tape and Reel information for the Format Lead Option package.