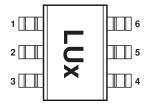
HSMP-386x Surface Mount PIN Diodes

Data Sheet


Description/Applications

The HSMP-386x series of general purpose PIN diodes are designed for two classes of applications. The first is attenuators where current consumption is the most important design consideration. The second application for this series of diodes is in switches where low capacitance is the driving issue for the designer.

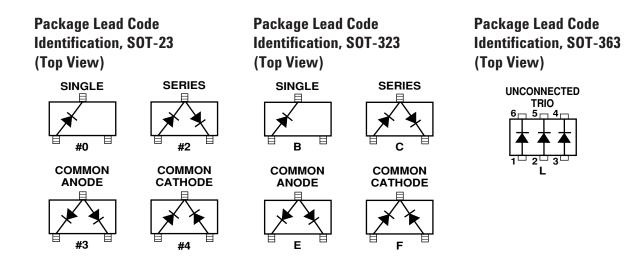
The HSMP-386x series Total Capacitance (C_T) and Total Resistance (R_T) are typical specifications. For applications that require guaranteed performance, the general purpose HSMP-383x series is recommended.

A SPICE model is not available for PIN diodes as SPICE does not provide for a key PIN diode characteristic, carrier lifetime.

Pin Connections and Package Marking, SOT-363

Notes:

1. Package marking provides orientation, identification, and date code.


2. See "Electrical Specifications" for appropriate package marking.

Features

- Unique Configurations in Surface Mount Packages
 - Add Flexibility
 - Save Board Space
 - Reduce Cost
- Switching
 - Low Distortion Switching
 - Low Capacitance
- Attenuating
- Low Current Attenuating for Less Power Consumption
- Matched Diodes for Consistent Performance
- Better Thermal Conductivity for Higher Power
 Dissipation
- Low Failure in Time (FIT) Rate^[1]
- · Lead-free Option Available

Note:

1. For more information see the Surface Mount PIN Reliability Data Sheet.

Absolute Maximum Ratings^[1] $T_{C} = +25^{\circ}C$

Symbol	Parameter	Unit	SOT-23	SOT-323
lf	Forward Current (1 µs Pulse)	Amp	1	1
P _{IV}	Peak Inverse Voltage	V	50	50
Tj	Junction Temperature	°C	150	150
T _{stg}	Storage Temperature	°C	-65 to 150	-65 to 150
q _{jc}	Thermal Resistance ^[2]	°C/W	500	150

ESD WARNING: Handling Precautions Should Be Taken To Avoid Static Discharge.

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to the device.

2. $T_c = +25$ °C, where T_c is defined to be the temperature at the package pins where contact is made to the circuit board.

Electrical Specifications $T_c = 25^{\circ}C$, each diode

PIN General Purpose Diodes, Typical Specifications $T_A = 25^\circ \text{C}$

Part Number HSMP-	Package Marking Code	Lead Code	Configuration	Minimum Breakdown Voltage V _{BR} (V)	Typical Series Resistance R _s (Ω)	Typical Total Capacitance C _T (pF)
3860	LO	0	Single	50	3.0/1.5*	0.20
3862	L2	2	Series			
3863	L3	3	Common Anode			
3864	L4	4	Common Cathode			
386B	LO	В	Single			
386C	L2	С	Series			
386E	L3	E	Common Anode			
386F	L4	F	Common Cathode			
386L	LL	L	Unconnected Trio			
Test Conditions				V _R = V _{BR} Measure I _R ≤ 10 μA	I _F = 10 mA f = 100 MHz I _F = 100 mA*	V _R = 50 V f = 1 MHz

Part Number HSMP-	Total Resistance R _T (Ω)	Carrier Lifetime t (ns)	Reverse Recovery Time T _{rr} (ns)	Total Capacitance C _T (pF)
386x	22	500	80	0.20
Test Conditions	l _F = 1 mA f = 100 MHz	I _F = 50 mA T _R = 250 mA	V _R = 10 V I _F = 20 mA 90% Recovery	V _R = 50 V f = 1 MHz

HSMP-386x Typical Parameters at $T_C = 25^{\circ}C$

Typical Performance, $T_C = 25^{\circ}C$, each diode

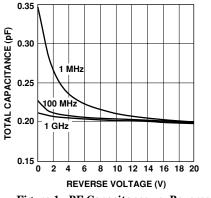


Figure 1. RF Capacitance vs. Reverse Bias.

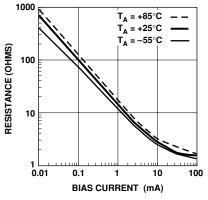


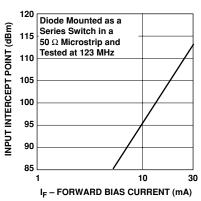
Figure 2. Typical RF Resistance vs. Forward Bias Current.

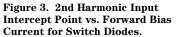
25°

V_F - FORWARD VOLTAGE (mA)

125

Figure 5. Forward Current vs.


0.2 0.4 0.6


Forward Voltage.

-50[¦]C

0.8

1.0 1.2

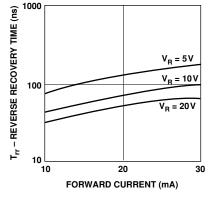
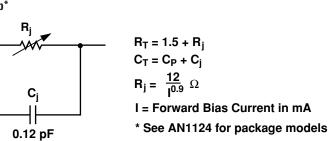



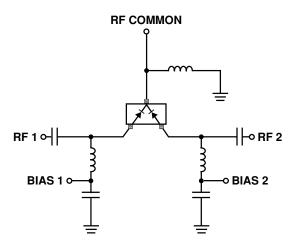
Figure 4. Reverse Recovery Time vs. Forward Current for Various Reverse Voltages.

R_s

-⁄⁄/γ-1.5 Ω

100

10


1

0.1

0.01

0

IF – FORWARD CURRENT (mA)

Typical Applications for Multiple Diode Products

Figure 6. Simple SPDT Switch, Using Only Positive Current.

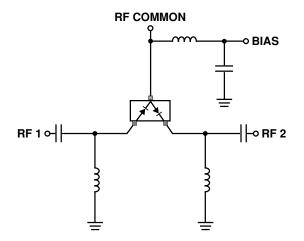


Figure 8. Switch Using Both Positive and Negative Current.

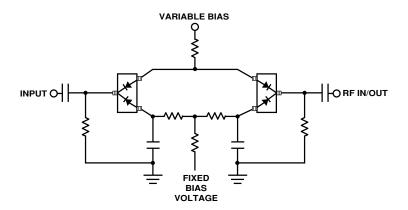


Figure 10. Four Diode π Attenuator. See AN1048 for details.

Figure 7. High Isolation SPDT Switch, Dual Bias.

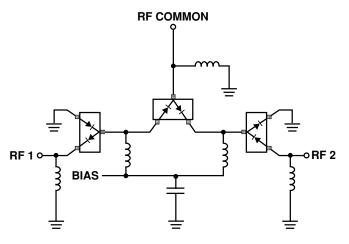


Figure 9. Very High Isolation SPDT Switch, Dual Bias.

Typical Applications for Multiple Diode Products (continued)

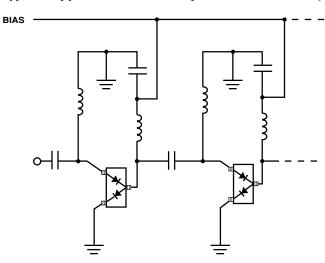


Figure 11. High Isolation SPST Switch (Repeat Cells as Required).

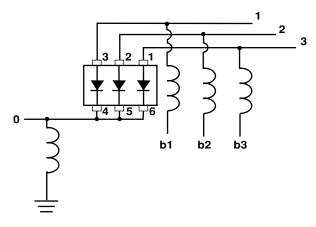
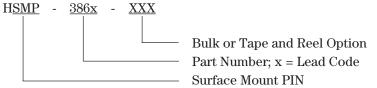



Figure 13. HSMP-386L used in a SP3T Switch.

Ordering Information

Specify part number followed by option. For example:

Option Descriptions

-BLK = Bulk, 100 pcs. per antistatic bag

-TR1 = Tape and Reel, 3000 devices per 7" reel

-TR2 = Tape and Reel, 10,000 devices per 13" reel

Tape and Reeling conforms to Electronic Industries RS-481, "Taping of Surface Mounted Components for Automated Placement."

For lead-free option, the part number will have the character "G" at the end, eg. -TR2G for a 10K pc lead-free reel.

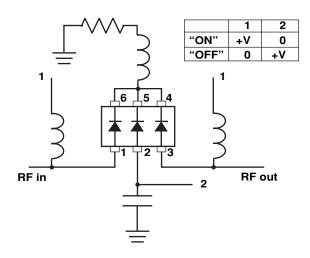


Figure 12. HSMP-386L Unconnected Trio used in a Positive Voltage, High Isolation Switch.

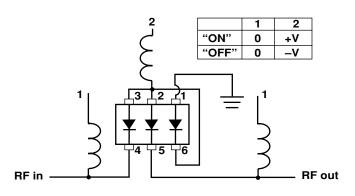
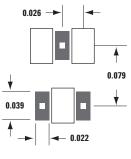
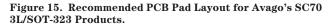
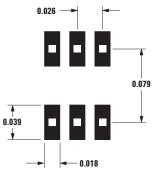



Figure 14. HSMP-386L Unconnected Trio used in a Dual Voltage, High Isolation Switch.


Assembly Information


SOT-323 PCB Footprint

Recommended PCB pad layouts for the miniature SOT packages are shown in Figures 15, 16, 17. These layouts provide ample allowance for package placement by automated assembly equipment without adding parasitics that could impair the performance.

Dimensions in inches

Figure 16. Recommended PCB Pad Layout for Avago's SC70 6L/SOT-363 Products.

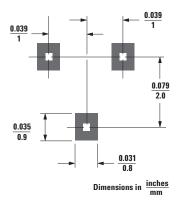


Figure 17. Recommended PCB Pad Layout for Avago's SOT-23 Products.

SMT Assembly

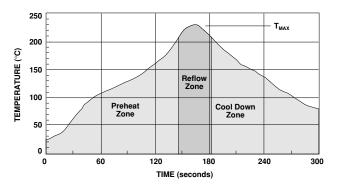
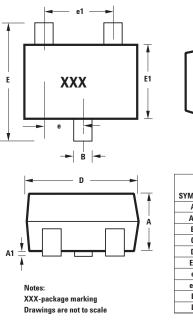
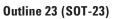
Reliable assembly of surface mount components is a complex process that involves many material, process, and equipment factors, including: method of heating (e.g., IR or vapor phase reflow, wave soldering, etc.) circuit board material, conductor thickness and pattern, type of solder alloy, and the thermal conductivity and thermal mass of components. Components with a low mass, such as the SOT package, will reach solder reflow temperatures faster than those with a greater mass.

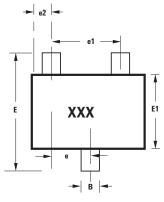
Avago's diodes have been qualified to the time-temperature profile shown in Figure 18. This profile is representative of an IR reflow type of surface mount assembly process.

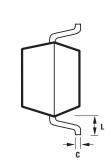
After ramping up from room temperature, the circuit board with components attached to it (held in place with solder paste) passes through one or more preheat zones. The preheat zones increase the temperature of the board and components to prevent thermal shock and begin evaporating solvents from the solder paste. The reflow zone briefly elevates the temperature sufficiently to produce a reflow of the solder.

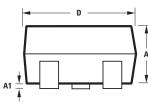
The rates of change of temperature for the ramp-up and cool-down zones are chosen to be low enough to not cause deformation of the board or damage to components due to thermal shock. The maximum temperature in the reflow zone (T_{MAX}) should not exceed 235°C.

These parameters are typical for a surface mount assembly process for Avago diodes. As a general guideline, the circuit board and components should be exposed only to the minimum temperatures and times necessary to achieve a uniform reflow of solder.

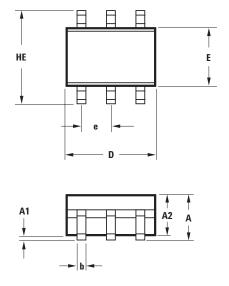




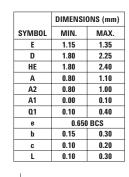

Figure 18. Surface Mount Assembly Profile.

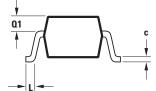

Package Dimensions Outline SOT-323 (SC-70, 3 Lead)



	DIMENSIONS (mm)				
SYMBOL	MIN.	MAX.			
Α	0.80	1.00			
A1	0.00	0.10			
В	0.15	0.40			
C	0.10	0.20			
D	1.80	2.25			
E1	1.10	1.40			
е	0.65 typical				
e1	1.30 typical				
E	1.80 2.40				
L	0.425 typical				

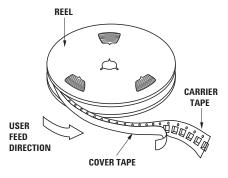




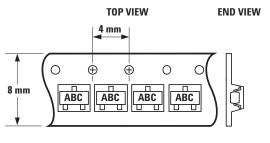

Notes: XXX-package marking Drawings are not to scale

	DIMENSIONS (mm)		
SYMBOL	MIN.	MAX.	
Α	0.79	1.20	
A1	0.000	0.100	
В	0.37	0.54	
C	0.086	0.152	
D	2.73	3.13	
E1	1.15	1.50	
е	0.89	1.02	
e1	1.78	2.04	
e2	0.45	0.60	
E	2.10	2.70	
L	0.45	0.69	

Outline 363 (SC-70, 6 Lead)

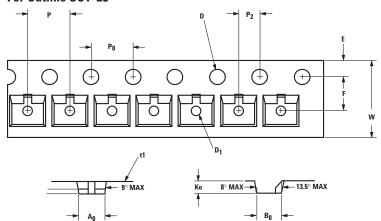


Package Characteristics

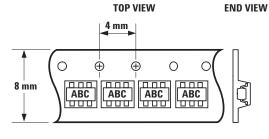

Lead Material Copper ((SOT-323/363); Alloy 42 (SOT-23)
Lead Finish Tin-Le	ad 85-15% (Non lead-free option)
	or Tin 100% (Lead-free option)
Maximum Soldering Temperature	
Minimum Lead Strength	
Typical Package Inductance	
Typical Package Capacitance	

 $\overline{7}$

Device Orientation


For Outlines SOT-23, -323

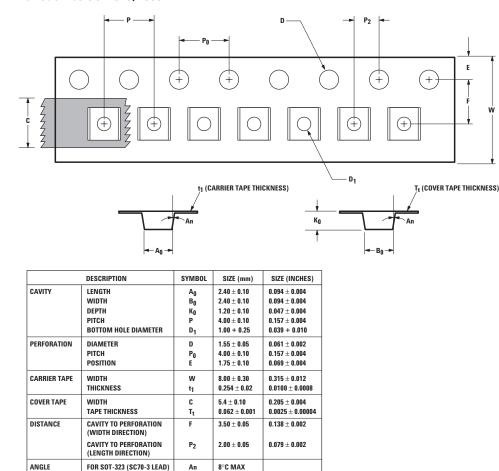
Note: "AB" represents package marking code. "C" represents date code.


A₀

Tape Dimensions and Product Orientation For Outline SOT-23

	DESCRIPTION	SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH	A ₀	$\textbf{3.15} \pm \textbf{0.10}$	$\textbf{0.124} \pm \textbf{0.004}$
	WIDTH	B ₀	$\textbf{2.77} \pm \textbf{0.10}$	0.109 ± 0.004
	DEPTH	KO	$\textbf{1.22} \pm \textbf{0.10}$	$\textbf{0.048} \pm \textbf{0.004}$
	PITCH	Р	$\textbf{4.00} \pm \textbf{0.10}$	$\textbf{0.157} \pm \textbf{0.004}$
	BOTTOM HOLE DIAMETER	D ₁	1.00 + 0.05	$\textbf{0.039} \pm \textbf{0.002}$
PERFORATION	DIAMETER	D	1.50 + 0.10	0.059 + 0.004
	PITCH	Po	$\textbf{4.00} \pm \textbf{0.10}$	$\textbf{0.157} \pm \textbf{0.004}$
	POSITION	E	$\textbf{1.75} \pm \textbf{0.10}$	$\textbf{0.069} \pm \textbf{0.004}$
CARRIER TAPE	WIDTH	w	8.00+0.30-0.10	0.315+0.012-0.004
	THICKNESS	t1	$\textbf{0.229} \pm \textbf{0.013}$	0.009 ± 0.0005
DISTANCE BETWEEN	CAVITY TO PERFORATION (WIDTH DIRECTION)	F	$\textbf{3.50} \pm \textbf{0.05}$	$\textbf{0.138} \pm \textbf{0.002}$
CENTERLINE	CAVITY TO PERFORATION (LENGTH DIRECTION)	P ₂	$\textbf{2.00} \pm \textbf{0.05}$	$\textbf{0.079} \pm \textbf{0.002}$

For Outline SOT-363



Note: "AB" represents package marking code. "C" represents date code.

8

Tape Dimensions and Product Orientation For Outlines SOT-323, -363

FOR SOT-363 (SC70-6 LEAD)

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

10°C MAX

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-4028EN AV02-0293EN - April 9, 2007

