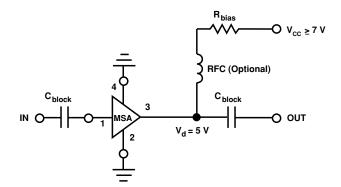
MSA-0286 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0286 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz $f_T, 25~{\rm GHz}~f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.$


Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 2.5 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- · Lead-free Option Available

86 Plastic Package

Typical Biasing Configuration

Parameter	Absolute Maximum ^[1]	Thermal
Device Current	60 mA	$\theta_{jc} =$
Power Dissipation ^[2,3]	325 mW	Notes:
RF Input Power	+13 dBm	1. Permanent da any of these li
Junction Temperature	150°C	$\begin{array}{c} \begin{array}{c} \text{ 2. } T_{\text{CASE}} = 25^{\circ}\text{C}. \end{array}$
Storage Temperature	-65 to 150°C	3. Derate at 9.5 1

al Resistance^[2]:

 $= 105^{\circ}C/W$

- amage may occur if limits are exceeded.
- С.
- mW/°C for $T_C > 116$ °C.

Electrical Specifications^{[1]}, $T_{A}=25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB		12.5	
		f = 1.0 GHz		10.0	12.0	
ΔG_P	Gain Flatness	f = 0.1 to 1.6 GHz	dB		±0.6	
f3 dB	3 dB Bandwidth		GHz		2.5	
VSWR	Input VSWR $f = 0.1 \text{ to } 3.0 \text{ G}$				1.5:1	
VSWIL	Output VSWR	f = 0.1 to 3.0 GHz			1.4:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		4.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		17.0	
tD	Group Delay	f = 1.0 GHz	psec		140	
Vd	Device Voltage		V	4.0	5.0	6.0
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 18 to 40 mA. Typical performance as a function of current is on the following page.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0286-BLK	100	Bulk		
MSA-0286-BLKG	100	Bulk		
MSA-0286-TR1	1000	7" Reel		
MSA-0286-TR1G	1000	7" Reel		
MSA-0286-TR2	4000	13" Reel		
MSA-0286-TR2G	4000	13" Reel		

Note: Order part number with a "G" suffix if lead-free option is desired.

Freq.	\mathbf{S}_{11}		S_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.10	171	12.5	4.22	175	-18.5	.119	1	.16	-5
0.2	.10	161	12.5	4.20	170	-18.3	.121	3	.16	-11
0.4	.10	144	12.4	4.16	159	-18.2	.122	6	.15	-24
0.6	.09	129	12.2	4.09	149	-18.0	.126	6	.15	-36
0.8	.08	119	12.1	4.01	139	-18.0	.127	9	.14	-48
1.0	.08	108	11.9	3.91	129	-17.4	.135	8	.14	-62
1.5	.06	111	11.3	3.67	106	-16.5	.149	12	.11	-99
2.0	.08	141	10.5	3.35	84	-15.7	.164	11	.11	-141
2.5	.14	150	9.6	3.01	67	-14.8	.182	9	.12	-176
3.0	.21	142	8.6	2.68	48	-14.3	.194	5	.13	155
3.5	.29	132	7.5	2.37	30	-14.0	.200	1	.14	140
4.0	.36	121	6.4	2.09	15	-13.5	.211	-3	.16	134
5.0	.50	101	4.1	1.61	-12	-13.3	.216	-12	.20	132

MSA-0286 Typical Scattering Parameters (Z $_{\rm 0}$ = 50 $\Omega,$ T $_{\rm A}$ = 25°C, I $_{\rm d}$ = 25 mA)

Typical Performance, **T**_A **= 25°C** (unless otherwise noted)

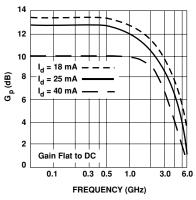


Figure 1. Typical Power Gain vs. Frequency.

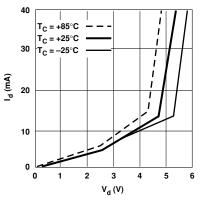


Figure 2. Device Current vs. Voltage.

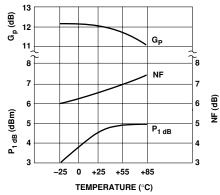


Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d = 25 \text{ mA}.$

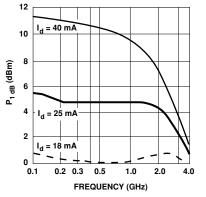


Figure 4. Output Power at 1 dB Gain **Compression vs. Frequency.**

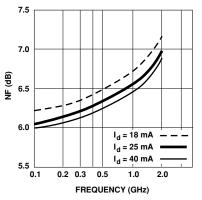
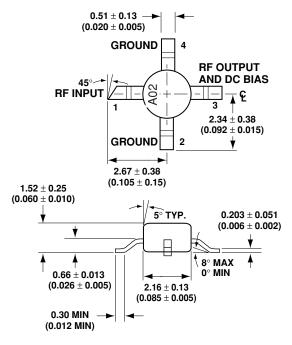



Figure 5. Noise Figure vs. Frequency.

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5965-9564E

5989-2749EN September 16, 2006

