

LM110/LM210/LM310 Voltage Follower

General Description

The LM110 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers. They use super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing.

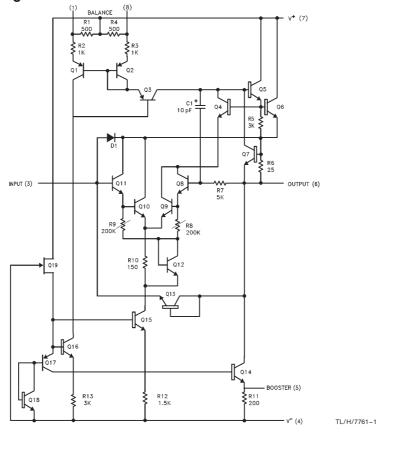
The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further, the frequency response is sufficiently better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 series voltage followers, offer-

ing lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.

The LM110 is specified over a temperature range $-55^{\circ}C \le T_A \le +125^{\circ}C$, the LM210 from $-25^{\circ}C \le T_A \le +85^{\circ}C$ and the LM310 from 0°C $\le T_A \le +70^{\circ}C$.

Features

■ Input current 10 nA max over temperature


Small signal bandwidthSlew rate

20 MHz 30 V/μs

■ Supply voltage range

 \pm 5V to \pm 18V

Schematic Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)

Supply Voltage $\pm\,18V$ Power Dissipation (Note 1) 500 mW Input Voltage (Note 2) $\pm\,15V$ Output Short Circuit Duration (Note 3) Indefinite

Operating Temperature Range

-55°C to +125°C LM110 LM210 -25°C to +85°C 0°C to +70°C LM310

Storage Temperature Range -65° C to $+150^{\circ}$ C Lead Temperature (Soldering, 10 sec.)

Soldering Information

Dual-In-Line Package

Soldering (10 sec.) 260°C

Small Outline Package Vapor Phase (60 sec.)

215°C Infrared (15 sec.) 220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD rating to be determined.

Electrical Characteristics (Note 4)

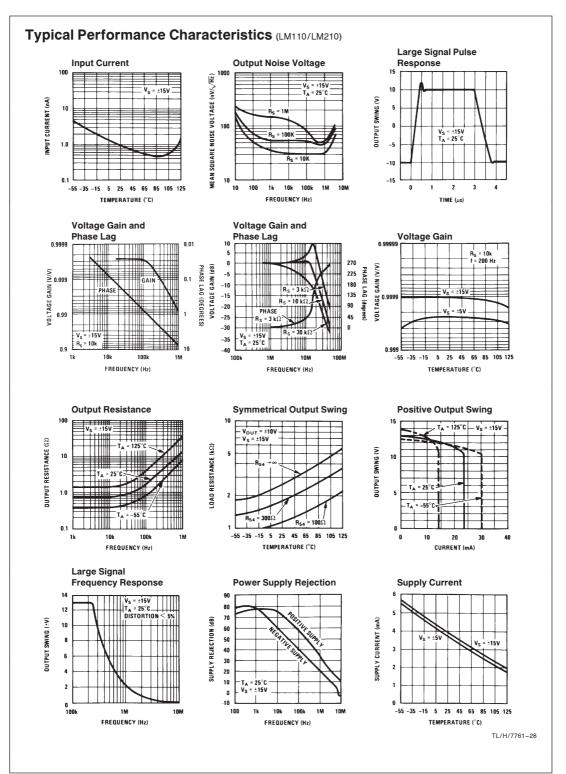
Parameter	Conditions	LM110			LM210			LM310			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Onits
Input Offset Voltage	$T_A = 25^{\circ}C$		1.5	4.0		1.5	4.0		2.5	7.5	mV
Input Bias Current	$T_A = 25^{\circ}C$		1.0	3.0		1.0	3.0		2.0	7.0	nA
Input Resistance	$T_A = 25^{\circ}C$	10 ¹⁰	10 ¹²		10 ¹⁰	1012		10 ¹⁰	10 ¹²		Ω
Input Capacitance			1.5			1.5			1.5		pF
Large Signal Voltage Gain	$T_A = 25$ °C, $V_S = \pm 15$ V $V_{OUT} = \pm 10$ V, $R_L = 8 \text{ k}\Omega$	0.999	0.9999		0.999	0.9999		0.999	0.9999		V/V
Output Resistance	$T_A = 25^{\circ}C$		0.75	2.5		0.75	2.5		0.75	2.5	Ω
Supply Current	$T_A = 25^{\circ}C$		3.9	5.5		3.9	5.5		3.9	5.5	mA
Input Offset Voltage				6.0			6.0			10	mV
Offset Voltage Temperature Drift	$\begin{array}{l} -55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +85^{\circ}\text{C} \\ +85 \leq \text{T}_{\text{A}} \leq 125^{\circ}\text{C} \\ 0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C} \end{array}$		6 12			6			10		μV/°C μV/°C μV/°C
Input Bias Current				10			10			10	nA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L = 10 \text{ k}\Omega$	0.999			0.999			0.999			V/V
Output Voltage Swing (Note 5)	$V_S = \pm 15V, R_L = 10 \text{ k}\Omega$	± 10			±10			±10			V
Supply Current	$T_A = 125$ °C		2.0	4.0		2.0	4.0				mA
Supply Voltage Rejection Ratio	$\pm 5V \le V_{\mbox{S}} \le \pm 18V$	70	80		70	80		70	80		dB

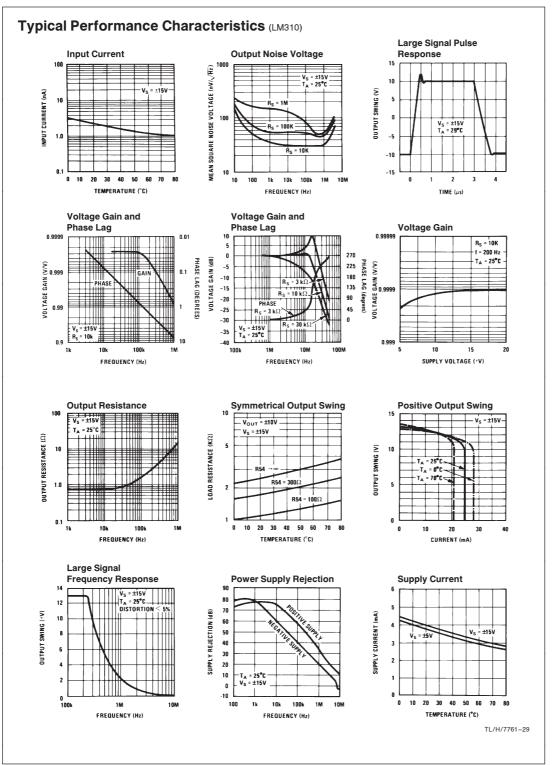
Note 1: The maximum junction temperature of the LM110 is 150°C, of the LM210 is 100°C, and of the LM310 is 85°C. For operating at elevated temperatures, devices in the HO8 package must be derated based on a thermal resistance of 165°C/W, junction to ambient, or 22°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than \pm 15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit for the LM110 and LM210 is allowed for case temperatures to 125°C and ambient temperatures to 70°C, and for the LM310, 70°C Note 3. Continuous sind citation to the Livin of and Liviz to sallowed to case temperature of 55°C ambient temperature. It is necessary to insert a resistor greater than 2 kΩ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted. $R_S = 5k$ min, 10k typical is recommended for dynamic stability in all applications.

Note 4. These specifications apply for $\pm 5V \le V_S \le \pm 18V$ and $-55^\circ C \le T_A 125^\circ C$ for the LM110, $-25^\circ C \le T_A \le 85^\circ C$ for the LM210, and $0^\circ C \le T_A \le 70^\circ C$ for

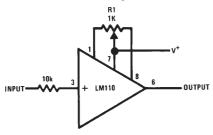

the LM310 unless otherwise specified.

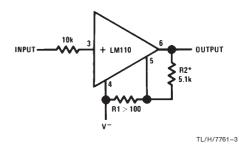

Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V - terminals. See curve.

Note 6: Refer to RETS110X for LM110H, LM110J military specifications.

Application Hint

The input must be driven from a source impedance of typically 10 k Ω (5 k Ω min.) to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a 10 k Ω resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation.





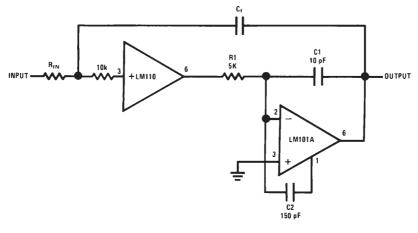
Auxiliary Circuits

Offset Balancing Circuit

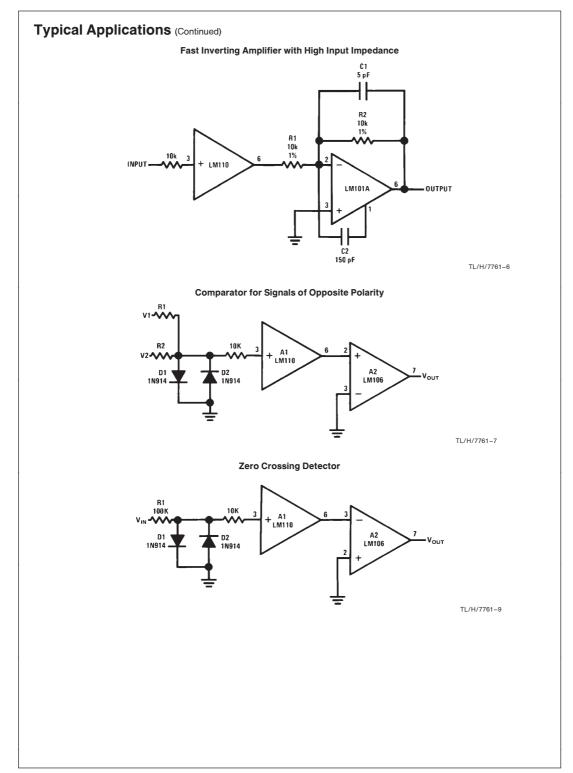
Increasing Negative Swing Under Load

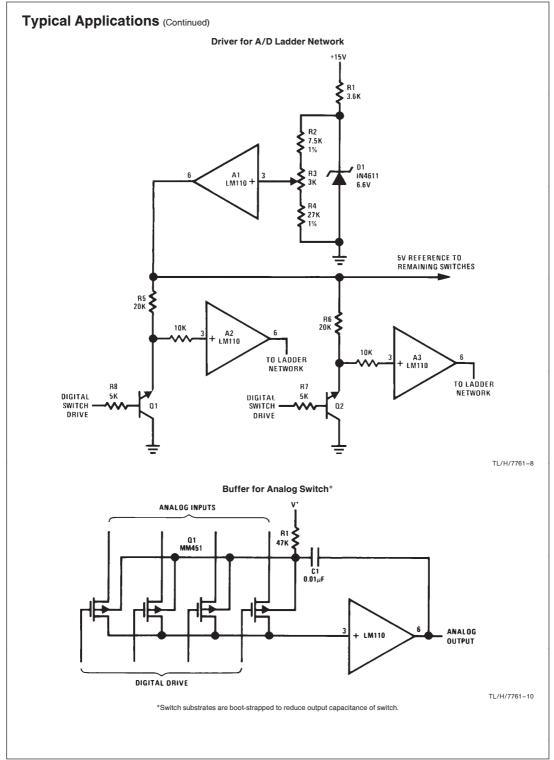


TL/H/7761-2

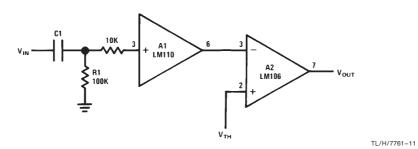

*May be added to reduce internal dissipation

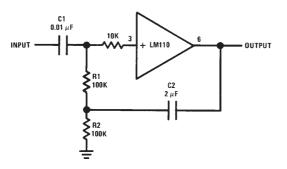
Typical Applications


Differential Input Instrumentation Amplifier



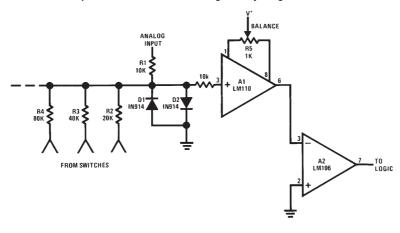
Fast Integrator with Low Input Current


TL/H/7761-5

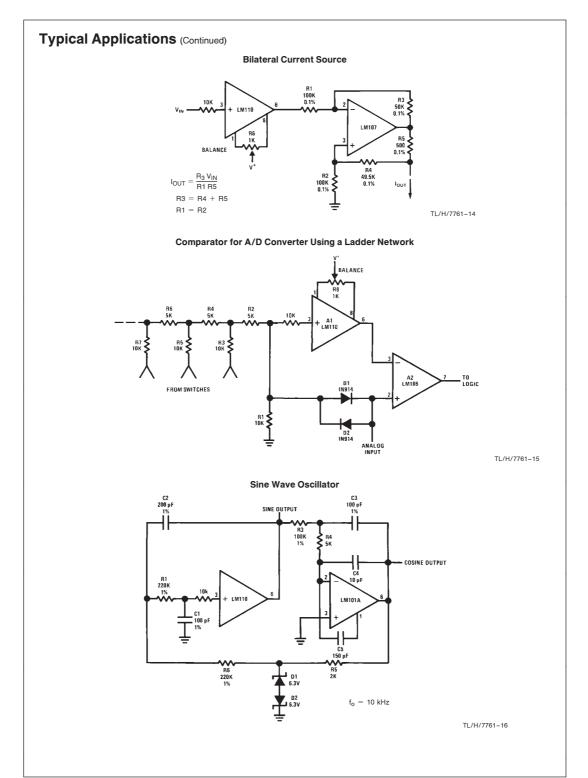


Typical Applications (Continued)

Comparator for AC Coupled Signals

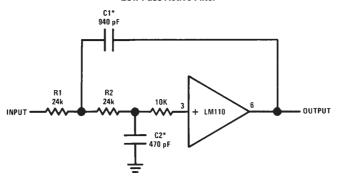


High Input Impedance AC Amplifier



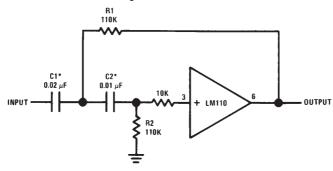
TL/H/7761-12

Comparator for A/D Converter Using a Binary-Weighted Network



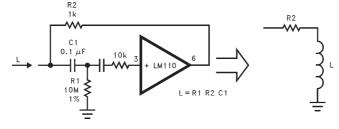
TL/H/7761-13

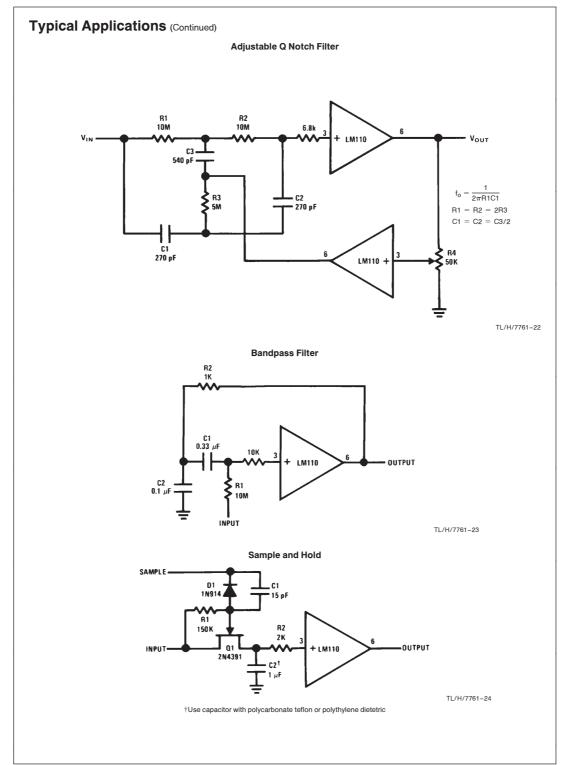
Typical Applications (Continued)

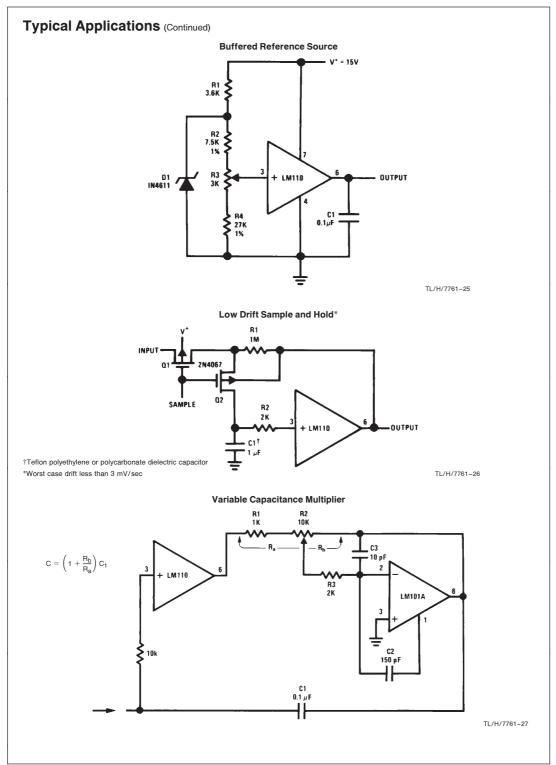

Low Pass Active Filter

TL/H/7761-18

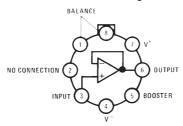
*Values are for 10 kHz cutoff. Use silvered mica capacitors for good temperature stability.


High Pass Active Filter


TL/H/7761-19

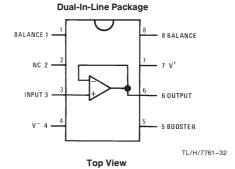

 * Values are for 100 Hz cutoff. Use metalized polycarbonate capacitors for good temperature stability.

Simulated Inductor


TL/H/7761-21

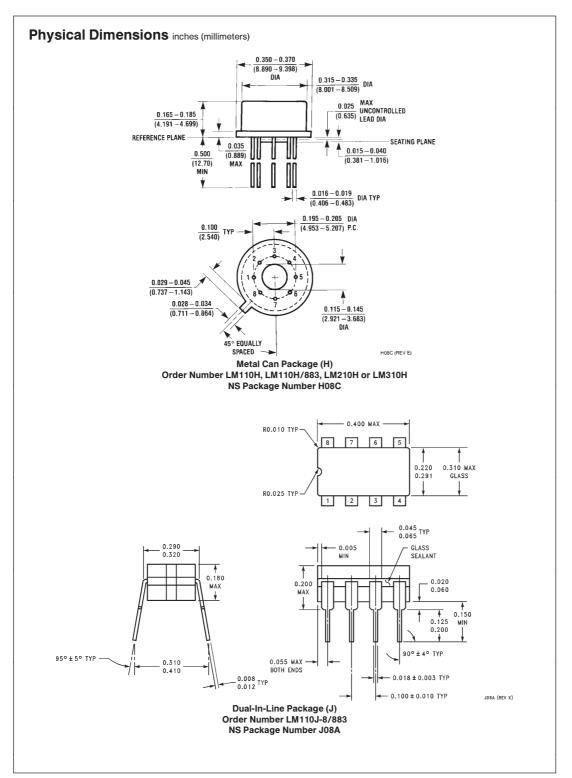
Connection Diagrams

Metal Can Package


TL/H/7761-30

Package is connected to Pin 4 (V $^-$) **Top View**

Order Number LM110H, LM210H or LM310H LM110H/883* See NS Package Number H08C



Top View
Order Number LM110J, LM210J,
LM310J or LM110J/883*
See NS Package Number J14A

Order Number LM310M, LM310N or LM110J-8/883* See NS Package Number J08A, M08A or N08E

*Available per SMD# 5962-8760601

