

Precision, 16 MHz CBFET Op Amp

AD845

FEATURES

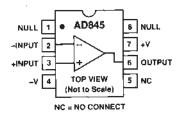
Replaces Hybrid Amplifiers in Many Applications

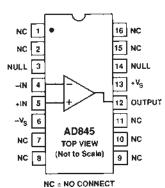
AC PERFORMANCE: Settles to 0.01% in 350 ns 100 V/μs Slew Rate 12.8 MHz Min Unity Gain Bandwidth 1.75 MHz Full Power Bandwidth at 20 V p-p

DC PERFORMANCE:

0.25 mV Max Input Offset Voltage
5 μV/°C Max Offset Voltage Drift
0.5 nA Input Bias Current
250 V/mV Min Open-Loop Gain
4 μV p-p Max Voltage Noise, 0.1 Hz to 10 Hz
94 dB Min CMRR
Available in Plastic Mini-DIP, Hermetic CERDIP, and SOIC Packages. Also Available in Tape and Reel in Accordance with EIA-481A Standard

GENERAL DESCRIPTION


The AD845 is a fast, precise, N channel JFET input, monolithic operational amplifier. It is fabricated using Analog Devices' complementary bipolar (CB) process. Advanced laser-wafer trimming technology enables the very low input offset voltage and offset voltage drift performance to be realized. This precision, when coupled with a slew rate of 100 V/µs, a stable unity gain bandwidth of 16 MHz, and a settling time of 350 ns to 0.01%—while driving a parallel load of 100 pF and 500 Ω —represents a combination of features unmatched by any FET input IC amplifier. The AD845 can easily be used to upgrade many existing designs that use BiFET or FET input hybrid amplifiers and, in some cases, those which use bipolar input op amps.


The AD845 is ideal for use in applications such as active filters, high speed integrators, photodiode preamps, sample-and-hold amplifiers, and log amplifiers, and for buffering A/D and D/A converters. The 250 μV max input offset voltage makes offset nulling unnecessary in many applications. The common-mode rejection ratio of 110 dB over a $\pm 10~V$ input voltage range represents exceptional performance for a JFET input high speed op amp. This, together with a minimum open-loop gain of 250 V/mV ensures that 12-bit performance is achieved, even in unity gain buffer circuits.

CONNECTION DIAGRAMS

Plastic Mini-DIP (N) Package and CERDIP (Q) Package

16-Lead SOIC (R-16) Package

The AD845 conforms to the standard op amp pinout except that offset nulling is to V+. The AD845J and AD845K grade devices are available specified to operate over the commercial 0°C to 70°C temperature range. AD845A and AD845B devices are specified for operation over the –40°C to +85°C industrial temperature range. The AD845S is specified to operate over the full military temperature range of –55°C to +125°C. Both the industrial and military versions are available in 8-lead CERDIP packages. The commercial version is available in an 8-lead plastic mini-DIP and 16-lead SOIC; J and S grade chips are also available.

PRODUCT HIGHLIGHTS

- 1. The high slew rate, fast settling time, and dc precision of the AD845 make it ideal for high speed applications requiring 12-bit accuracy.
- 2. The performance of circuits using the LF400, HA2520, HA2522, HA2525, HA2620, HA2622, HA2625, 3550, OPA605, and LH0062 can be upgraded in most cases.
- 3. The AD845 is unity gain stable and internally compensated.
- 4. The AD845 is specified while driving 100 pF/500 Ω loads.

AD845—SPECIFICATIONS (@ 25°C and \pm 15 V dc, unless otherwise noted.)

_			AD845J/A			AD845K/B			AD845S		
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
INPUT OFFSET VOLTAGE ¹ Initial Offset Offset Drift	T_{MIN} to T_{MAX}		0.7	1.5 2.5 20		0.1	0.25 0.4 5.0		0.25	1.0 2.0 10	mV mV μV/°C
				20		1.5	3.0			10	μν/ С
INPUT BIAS CURRENT ² Initial	$V_{CM} = 0 V$ T_{MIN} to T_{MAX}		0.75	2 45/75		0.5	1 18/38		0.75	2 500	nA nA
INPUT OFFSET CURRENT Initial	$V_{CM} = 0 V$ T_{MIN} to T_{MAX}		25	300 3/6.5		15	100 1.2/2.6		25	300 20	pA nA
INPUT CHARACTERISTICS Input Resistance Input Capacitance			10 ¹¹ 4.0			10 ¹¹ 4.0			10 ¹¹ 4.0		kΩ pF
INPUT VOLTAGE RANGE Differential Common-Mode Common-Mode Rejection	$V_{\rm CM} = \pm 10 \ { m V}$	±10 86	±20 +10.5/-13 110		±10 94	±20 +10.5/-13 113		±10 86	±20 +10.5/-13 110		V V dB
INPUT VOLTAGE NOISE	0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 100 Hz f = 1 kHz f = 10 kHz f = 100 kHz		4 80 60 25 18 12			4 80 60 25 18 12			4 80 60 25 18 12		$\begin{array}{c} \mu V \ p-p \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \end{array}$
INPUT CURRENT NOISE	f = 1 kHz		0.1			0.1			0.1		pA/√ Hz
OPEN-LOOP GAIN	$\begin{split} V_{O} &= \pm 10 \text{ V} \\ R_{LOAD} &\geq 2 \text{ k}\Omega \\ R_{LOAD} &\geq 500 \Omega \\ T_{MIN} &- T_{MAX} \end{split}$	200 100 70	500 250		250 125 75	500 250		200 100 50	500 250		V/mV V/mV V/mV
OUTPUT CHARACTERISTICS Voltage Current Output Resistance	$R_{LOAD} \ge 500 \Omega$ Short Circuit Open Loop	±12.5	50 5		±12.5	50 5		±12.5	50 5		V mA Ω
FREQUENCY RESPONSE Small Signal Full Power Bandwidth ³	Unity Gain $V_{O} = \pm 10 \text{ V}$ $R_{LOAD} = 500 \Omega$	12.8	16 1.75		13.6	16 1.75		13.6	16 1.75		MHz MHz
Rise Time Overshoot Slew Rate Settling Time	10 V Step C _{LOAD} = 100 pF	80	20 20 100		94	20 20 100		94	20 20 100		ns % V/µs
	$R_{LOAD} = 500 \Omega$ to 0.01% to 0.1%		350 250			350 250	500		350 250	500	ns ns
DIFFERENTIAL GAIN	f = 4.4 MHz		0.04			0.04			0.04		%
DIFFERENTIAL PHASE	f = 4.4 MHz		0.02			0.02			0.02		Degree
POWER SUPPLY Rated Performance Operating Range		±4.75	±15	±18	±4.75	±15	±18	±4.75	±15	±18	V V
Rejection Ratio	$V_S = \pm 5 \text{ to } \pm 15 \text{ V}$	88	110		95	113		88	110		dB
Quiescent Current	T_{MIN} to T_{MAX}		10	12		10	12		10	12	mA

NOTES

All min and max specifications are guaranteed. Specifications shown in **boldface** are tested on all production units at final electrical test. Results from these tests are used to calculate outgoing quality levels.

Specifications subject to change without notice.

 $^{^{1}}$ Input offset voltage specifications are guaranteed after five minutes of operation at $T_A = 25$ °C.

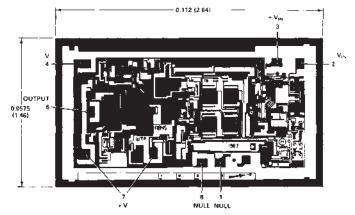
 $^{^2}$ Bias current specifications are guaranteed maximum at either input after five minutes of operation at $T_A = 25$ °C.

 $^{^{3}}$ FPBW = slew rate/2 π V peak.

 $^{^4}$ S grade T_{MIN} – T_{MAX} are tested with automatic test equipment at T_A = -55°C and T_A = +125°C.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage
Internal Power Dissipation ²
Plastic Mini-DIP1.6 W
CERDIP
16-Lead SOIC
Input Voltage
Output Short-Circuit Duration Indefinite
Differential Input Voltage $\dots + V_S$ and $-V_S$
Storage Temperature Range
Q65°C to +150°C
N, R65°C to +125°C
Lead Temperature Range (Soldering 60 sec) 300°C


NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Mini-DIP package: θ_{JA} = 100°C/W; CERDIP package: θ_{JA} = 110°C/W; SOIC package: θ_{JA} = 100°C/W.

METALIZATION PHOTOGRAPH

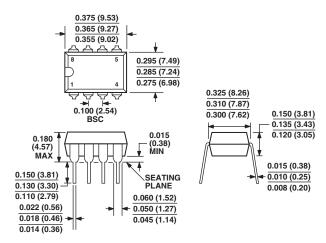
Dimensions shown in inches and (mm). Contact factory for latest dimensions.

SUBSTRATE CONNECTED TO +Vs

ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Description	Option ¹
AD845JN	0°C to 70°C	8-Lead PDIP 8-Lead PDIP 16-Lead SOIC Tape and Reel Tape and Reel 8-Lead CERDIP 8-Lead CERDIP 8-Lead CERDIP	N-8
AD845KN	0°C to 70°C		N-8
AD845JR-16	0°C to 70°C		R-16
AD845JR-16-REEL	0°C to 70°C		R-16
AD845JR-16-REEL7	0°C to 70°C		Q-16
AD845AQ	-40°C to +85°C		Q-8
AD845BQ	-40°C to +85°C		Q-8
AD845SQ	-55°C to +125°C		Q-8
AD845SQ/883B 5962-8964501PA ² AD845JCHIPS	-55°C to +125°C -55°C to +125°C 0°C to 70°C	8-Lead CERDIP 8-Lead CERDIP Die	Q-8 Q-8

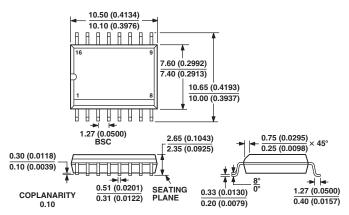
NOTES


 $^{^{1}}N$ = Plastic DIP; Q = CERDIP; R = Small Outline IC (SOIC).

²See military data sheet.

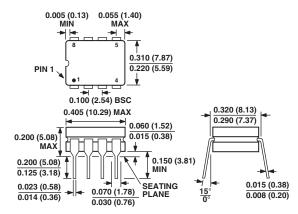
OUTLINE DIMENSIONS

8-Lead Plastic Dual In-Line Package [PDIP] (N-8)


Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

16-Lead Standard Small Outline Package [SOIC] Wide Body (R-16)


Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-013AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8)

Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN